# **Hybrid Control System**

**USTEP** 

**Battery-Free, Built-in Absolute Sensor** 

Battery-Free, Built-in Absolute Sensor AZ Series

Electric Linear Slides
EZS Series  $\alpha$ STEP AZ Equipped

Electric Cylinders

EAC Series *OSTEP* AZ Equipped

Electric Cylinders

DR\$2 Series \( \mathcal{Q}\_{STEP} \) AZ Equipped

Hollow Rotary Actuators **DGII** Series *QSTEP* **AZ** Equipped

Overview

**ОС**STEP Absolute

> Linear Slides  $\alpha_{\text{STEP}}$

Cylinders *Окатер* 

Cylinders

CYSTEP

DRS2

Rotary Actuators *OCSTEP* **DGII** 

C(STEP)

|                   | Page   |
|-------------------|--------|
| AZ Series ·····   | · B-16 |
| EZS Series        | · B-74 |
| EAC Series        | · B-76 |
| DRS2 Series ····· | · B-78 |
| DGII Series ····  | · B-80 |

Hybrid Control System *QSTEP* Battery-Free, Built-in Absolute Sensor

# AZ Series AC Power Supply Input

AC

DC Input

EtherCAT Multi-Axis Driver For detailed information about regulations and standards, please refer to the Oriental Motor website.

Built-in Controller Type FLEX Pulse Input Type

By incorporating the newly developed absolute sensor, an absolute system is now possible without a battery. Advanced positioning is possible at affordable prices.

- Equipped with the newly developed absolute sensor
- External sensors not required
- Shortens the return-to-home time
- Battery not required
- Energy savings and low heat generation
- Select from 3 different drivers based on the system configuration
- Achieve easy operation with the support software MEXEO2



Pulse Input Type

with RS-485 Communication

See Full Product Details Online www.orientalmotor.com

- Manual
- Specifications
- Dimensions

- CAD
- Characteristics
- Connection and Operation

#### Features

## Advanced Technology at Affordable Prices

Oriental Motor has developed and patented a compact, low-cost, battery-free mechanical type absolute sensor.

The **AZ** Series can contribute to improved productivity and cost reductions, and is available at affordable prices.

List Price starting from \$873.00
 [Total price of motors, drivers and cables (1 m (3.3 ft.))]



# **Newly Developed Absolute Sensor**

#### Mechanical-Type Sensor

A mechanical sensor composed of multiple gears is employed. Positioning information is detected by recognizing the angle of the individual gears. As a result, it does not require a battery.

#### Multiple-Rotation Absolute System

Absolute position detection is possible with  $\pm 900$  rotations (1800 rotations) of the motor shaft from the home position.

#### Home Setting Method

The home position can be easily set by pressing a switch on the driver, which is saved by the absolute system. In addition, home setting is possible with the support software **MEXEO2** or by using an external input signal.



# Hybrid Control System **QSTEP** B-17

## No External Sensors Required

With the use of the absolute system, external sensors such as the home sensor and the limit sensor are not needed.

#### Reduced Cost

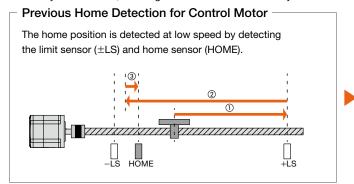
Sensor costs and wiring costs can be reduced, allowing for lower system costs.

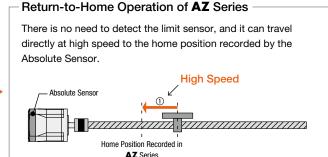
#### Simple Wiring

Wiring is simplified, and the degree of freedom for equipment design is increased.

#### Not Affected by Sensor Malfunctions

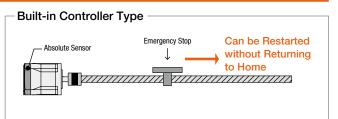
There is no concern about sensor malfunctions (when operating in environments filled with oil mist or filled with metal pieces due to metal processing), sensor failures or sensor wire disconnections.


#### Improved Return-to-Home Accuracy


Home position accuracy is increased because the return-to-home operation is performed regardless of any variations in home sensor sensitivity.

If no limit sensor is installed, movements that exceed the limit values can be avoided through the use of the limits in the driver software.

# Shortened Reset Time (1) High Speed Return-to-Home


Because return-to-home is possible without using an external sensor, return-to-home can be performed at high speed without taking the sensor sensitivity into account, allowing for a shortened machine cycle.





# Shortened Reset Time (2) Return-to-Home is Not Necessary

Even if the power shuts down during a positioning operation, the positioning information is retained. Furthermore, for built-in controller types, positioning operations can restart without performing a return-to-home operation when recovering from an emergency stop of the production line or a blackout.



Overview

Slides

CSTEF

Cylinders

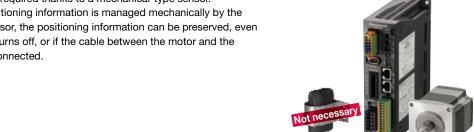
Cylinders **Й**STEP DR\$2

Rotary Actuators

OCIT

O

**USTEP** AR


# No Battery Required

No battery is required thanks to a mechanical-type sensor. Because positioning information is managed mechanically by the Absolute Sensor, the positioning information can be preserved, even if the power turns off, or if the cable between the motor and the driver is disconnected.

Input

DC Input

**EtherCAT** Driver



#### Reduced Maintenance

Because there is no battery that needs replacement, maintenance time and costs can be reduced.

#### Unlimited Driver Installation Possibilities

Because there is no need to secure space for battery replacement. there are no restrictions on the installation location of the driver, improving the flexibility and freedom of the layout design of the control box.

#### Safe for Overseas Shipping

Normal batteries will self-discharge, so care must be taken when the equipment requires a long shipping time, such as when being sent overseas. The Absolute Sensor does not require a battery, so there is no limit to how long the positioning information is maintained. In addition, there is no need to worry about various safety regulations, which must be taken into consideration when shipping a battery overseas.

#### Position Holding Even when the Cable between the Motor and Driver is Detached

Positioning information is stored within the Absolute Sensor.

Because the positioning information is stored in the Absolute Sensor, the home position must be reset if the motor is replaced.

## **High Reliability**

High reliability is provided by using a Hybrid control method unique to Oriental Motor that combines the merits of both open loop control and closed loop control.

#### Continues Operation Even with Sudden Load Fluctuation and Sudden Acceleration

In normal conditions, it operates synchronously with pulse commands under open loop control, and because of its compact size and high torque generation, it has excellent acceleration performance and response. In an overload condition, it switches immediately to closed loop control to correct the position.

#### Alarm Signal Output in Case of Abnormality

If a continuous overload is applied, an alarm signal is output. Also, when the positioning is completed, a signal is output. This provides high reliability.

#### No Tuning Required

Because it is normally operated with open loop control, positioning is still possible without gain tuning even when the load fluctuates due to the use of a belt mechanism, cam or chain drive, etc.

#### Holding the Stop Position

During positioning, the motor stops with its own holding force without hunting. Because of this, it is ideal for applications where the low rigidity of the mechanism requires absence of vibration upon stopping.

#### Smooth Operation Even at Low Speed

Thanks to the standard microstep drive and smooth drive function\*, vibration is reduced even at low speed and the motor can move objects smoothly.

\*The smooth drive function automatically microsteps based on the same traveling amount and speed used in the full step mode, without changing the pulse input settings.

# Hybrid Control System *OLSTEP* B-19

248

212 100

 176 . වූ 80

140 gt 140

68

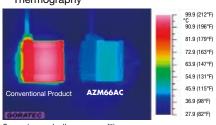
Temp <u>≣</u> 104

Motor Surface Temperature during

Operation Under the Same Conditions

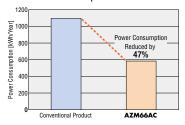
Time [min]

## **Energy Savings**


Heat generation is reduced thanks to the high efficiency motor, resulting in energy savings.

#### Lower Heat Generation

Heat generation by the motor has been significantly reduced through higher efficiency.


47% Less Power Consumption\* than Conventional Oriental Motor Products Due to Energy-Saving **Features** 

Temperature Distribution by Thermography



Comparison under the same conditions.

Power Consumption



#### \*Operating Condition

- · Speed: 1000 r/min, load factor: 50%
- Operating Time: 24 hours of operation, 365 days/year (70% operating, 25% stand-by, 5% off)
- · Power Supply Voltage: Single-Phase 200-240 VAC

Overview

Linear Slides **CASTER** 

Conventional P AZM66AC

Cylinders **Й**STEP DR\$2

Rotary Actuators

OUSTEP

DGII

**USTEP** AR

# 3 Driver Types Available Depending on the System Configuration

3 Types of AZ Series drivers are available, depending on the master control system in use.

#### Built-in Controller Type FEXT

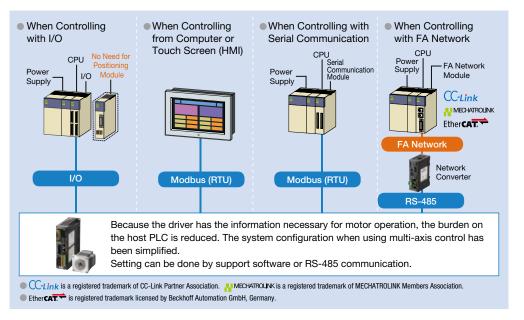
With this type, the operating data is set in the driver, and is then selected and executed from the host system. Host system connection and control are performed with I/O, Modbus (RTU)/RS-485 or FA network. By using a network converter (sold separately), EtherCAT, CC-link or MECHATROLINK communication is possible.

#### Basic Setting (Factory Setting)

Motor or Actuator Equipped with AZ Series








Setting Operating Data and Changing Parameters Support Software MEXEO2

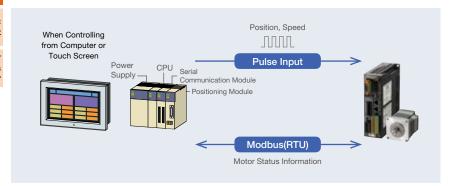
Setting using RS-485 communication is also possible.



FLEX is the collective name for products that support I/O control, Modbus (RTU) control, and FA network control via network converters



#### Technical Support


#### Pulse Input Type with RS-485 Communication

This type executes operations by inputting pulses into the driver. Control the motor using a positioning module (pulse generator) that you have obtained yourself. Motor status information (position, speed, torque, alarm, temperature, etc.) can be checked by using RS-485 communication.

AC Input

DC Input

EtherCAT Multi-Axis Driver



#### Basic Setting (Factory setting)

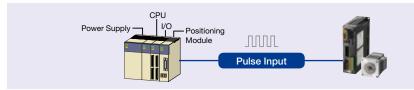


I/O Assignment Changing Parameter Changing Support Software (MEXEO2)



The support software (**MEXEO2**) can be used to check the alarm history and monitor status information

#### Pulse Input Type


This type executes operations by inputting pulses into the driver. It controls the motor using a positioning module (pulse generator).



I/O Assignment Changing Parameter Changing Support Software (MEXEO2)

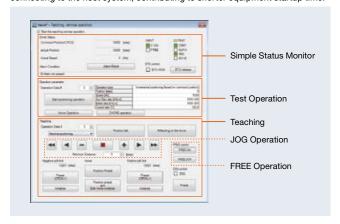


The support software (**MEXEO2**) can be used to check the alarm history and monitor status information.



The support software **MEXEO2** can be downloaded from the Oriental Motor website.

# Easy Operation through the Use of the Support Software **MEXEO2**


#### Test Function

This function enables you to operate a motor alone or check the connection to the host system. Using this function when starting up the equipment can reduce the overall startup time.

#### 



Support software can be used to easily perform the home setting and also drive the motor. Teaching, test operations, and more can be performed before connecting to the host system, contributing to shorter equipment startup time.



#### √I/O Test

On startup

host system and network I/O operation.

For operation

Monitoring input signals and forced output of output signals can be performed. These are convenient functions for confirming wiring with the

Overview

Slides

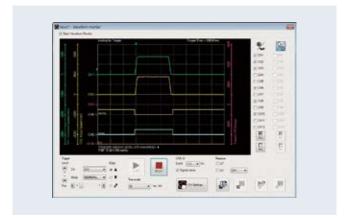
CSTEF

Cylinders **Χ**STEF DRS2

Rotary Actuators

OCSTEP

DGII


*OLSTEP* AR

# Hybrid Control System **QSTEP** B-21

#### Various Monitoring Functions

#### 

The operating status of the motor and output signals can be checked by an oscilloscope-like image. This can be used for equipment start-up and adjustment.



#### **♦** Status Monitoring On startup


Speed, motor, driver temperature, and load factor during operations, the integrating rotation amount, etc. can be monitored from the start of use. The signal for each item can be output at your discretion, which leads to efficient maintenance.



- 1) Detects the actual position in comparison to the command position.
- ②Detects the actual speed in comparison to the command speed.
- 3 Detects the temperature of the motor encoder section and inside the driver.
- With the output torque of the motor speed at 100%, the current load factor can be displayed.

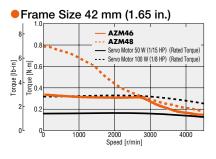
#### 

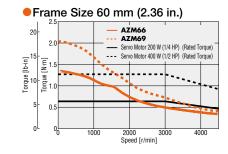
When an abnormality occurs, the details of the abnormality, the operating status at the time of the occurrence, and the solution can be checked.

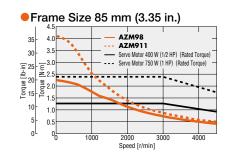


#### Multi-Monitoring Compatible

Multiple setting screens, such as the data setting, test operation, and monitor screens, can be simultaneously opened and used. This enables smooth equipment startup, adjustment, and more.





## Reference Output Power of Stepper Motors


The following indicates the output power [W(HP)] as "rated output power" when a servo motor is running at the "rated speed". While high positioning accuracy and high torque at medium to low speeds are features of the stepper motor, because it does not have a "rated speed", there is no "rated output power" noted. The following table lists the wattage of the servo motor rated torque which is equivalent to the AZ Series standard type motor torque for reference.

| AZ Series (          | Standard Type) | Servo Motor with Rated Torque or Equivalent (Reference) |                                                         |
|----------------------|----------------|---------------------------------------------------------|---------------------------------------------------------|
| Frame Size           | Product Name   | List Price*                                             | Servo motor with nated forque of Equivalent (neference) |
| 42 mm (1.65 in.)     | AZM46          | \$873.00 ~                                              | 50-100 W (1/15-1/8 HP) Rated Torque or Equivalent       |
| 42 11111 (1.03 111.) | AZM48          | \$891.00~                                               | 150-100 W (1/15-1/6 HF) hateu lorque or Equivalent      |
| 60 mm (2.36 in.)     | AZM66          | \$928.00~                                               | 100-200 W (1/8-1/4 HP) Rated Torque or Equivalent       |
| 00 IIIII (2.30 III.) | AZM69          | \$933.00~                                               | 200-400 W (1/4-1/2 HP) Rated Torque or Equivalent       |
| 0F mm (2.2F in )     | AZM98          | \$956.00~                                               | 400-750 W (1/2-1 HP) Rated Torque or Equivalent         |
| 85 mm (3.35 in.)     | AZM911         | \$978.00~                                               | 400-750 W (1/2-1 HF) hateu lorque di Equivalent         |

\*Each price shows an example of the total price of a motor, a driver, and a 1 m (3.3 ft.) connection cable.







Data for the speed – torque characteristics is based on Oriental Motor's internal measurement conditions. If the conditions are changed, the characteristics may also change as a result.

TEL: (800) 468-3982 Live Chat: www.orientalmotor.com E-mail: techsupport@orientalmotor.com

## Product Line of Motors

#### Types and Features of Standard and Geared Motors

AC Input

> DC Input

EtherCAT Multi-Axis Driver

|              | Туре                                         | Features                                                                                                                                                                      | Permissible Torque and<br>Max. Instantaneous<br>Torque [N·m (lb-in)] | Backlash<br>[arcmin] | Basic Resolution<br>[deg/step] | Output Shaft Speed<br>[r/min] |
|--------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------|--------------------------------|-------------------------------|
|              | Standard Type                                | · Basic motor of the <b>AZ</b> Series                                                                                                                                         | Maximum Holding Torque<br>4 (35)                                     | _                    | 0.36                           | 4500                          |
| dash         | TS Geared Type<br>(Spur Gear Mechanism)      | A wide variety of low gear ratios for<br>high-speed operation     Gear ratio:     3.6, 7.2, 10, 20, 30                                                                        | Permissible Torque / Max. Instantaneous Torque 25 (220) 45 (390)     | 10 (0.17°)           | 0.012                          | 833                           |
| Low backlash | PS Geared Type<br>(Planetary Gear Mechanism) | High permissible/ max. instantaneous torque     A wide variety of gear ratios for selecting the desired step angle     Center shaft     Gear ratio:     5,7.2, 10, 25, 36, 50 | Permissible Torque  Max. Instantaneous Torque  37 (320) 60 (530)     | 7 (0.12°)            | 0.0072                         | 600                           |
| klash        | HPG Geared Type (Harmonic Planetary)         | High positioning accuracy     High permissible/     max. instantaneous torque     Center shaft     Gear ratio:     5, 9, 15                                                   | Permissible Torque Max. Instantaneous Torque 24 (210) 33 (290)       | 3 (0.05°)            | 0.024                          | 900                           |
| Non-backlash | Harmonic Geared Type (Harmonic Drive)        | High positioning accuracy     High permissible/     max. instantaneous torque     High gear ratio, high resolution     Center shaft     Gear ratio:     50, 100               | Permissible Torque \max. Instantaneous Torque 52 (460) 107 (940)     | 0                    | 0.0036                         | 70                            |

Note

Please use the above values as reference to see the differences between each type. These values vary depending on the motor frame size and gear ratio.

Harmonic Planetary, Harmonic Drive and sare registered trademarks of Harmonic Drive Systems Inc.

Oriental Motor offers pre-assembled geared motors.

Based on torque, accuracy (backlash) and list price, the optimal type can be selected from the various geared motors.



List Price

# Hybrid Control System *QSTEP* B-23

#### Driver and Motor Product Line

|                      |                          |                     | Motor               |                        |                     |                                        |
|----------------------|--------------------------|---------------------|---------------------|------------------------|---------------------|----------------------------------------|
|                      | Flashamanakia            | Frame Size          |                     |                        |                     |                                        |
| Туре                 | Electromagnetic<br>Brake | 20 mm<br>(0.79 in.) | 28 mm<br>(1.10 in.) | 42 mm *1<br>(1.65 in.) | 60 mm<br>(2.36 in.) | 85 mm (3.35 in.)<br>90 mm (3.54 in.)*3 |
| Standard Type        | Not Equipped             | _                   | _                   | •                      | •                   | •                                      |
| Stanuaru Type        | Equipped                 | _                   | _                   | <b>●*</b> 2            | •                   | <b>●*</b> 4                            |
| TS Geared Type       | Not Equipped             | _                   | _                   | •                      | •                   | •                                      |
| 13 dealed Type       | Equipped                 | _                   | _                   | •                      | •                   | •                                      |
| PS Geared Type       | Not Equipped             | _                   | _                   | •                      | •                   | •                                      |
| rs dealed Type       | Equipped                 | _                   | _                   | •                      | •                   | •                                      |
| HPG Geared Type      | Not Equipped             | _                   | _                   | •                      | •                   | •                                      |
| nro dealed Type      | Equipped                 | _                   | _                   | •                      | •                   | •                                      |
| Harmonic Geared Type | Not Equipped             | _                   | _                   | •                      | •                   | •                                      |
| namonic dealed Type  | Equipped                 | _                   | _                   | •                      | •                   | •                                      |

**\*1 HPG** Geared Type is 40 mm (1.57 in.) **\*2 AZM46** only **\*3** Geared type **\*4 AZM98** only

| Driver                                                              |                                               |  |
|---------------------------------------------------------------------|-----------------------------------------------|--|
| Power Supply Input                                                  | Туре                                          |  |
|                                                                     | Built-in Controller Type                      |  |
|                                                                     |                                               |  |
| Single-Phase 100-120 VAC<br>Single-Phase/Three-Phase<br>200-240 VAC | Pulse Input Type with<br>RS-485 Communication |  |
|                                                                     |                                               |  |
|                                                                     | Pulse Input Type                              |  |
|                                                                     |                                               |  |

Overview

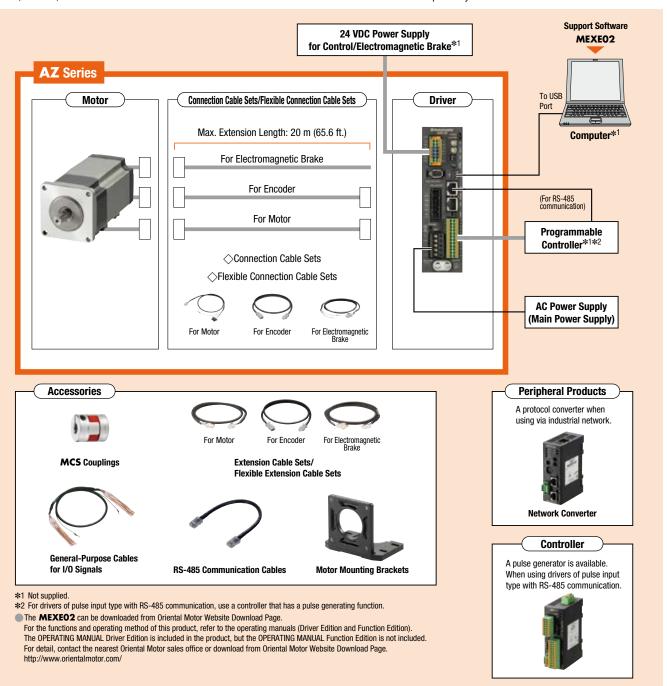
Linear Slides ØSTEP EZS

Cylinders *QsтеР* **DRS2** 

Rotary Actuators *OLSTEP* **DGII** 

*O*STEP AR

# System Configuration


 Combination of Standard Type Motor with an Electromagnetic Brake and Built-in Controller Type Driver or the Pulse Input Type Driver with RS-485 Communication

A configuration example of I/O control with a built-in Controller type driver or using RS-485 communication is shown below. Motors, drivers, and a connection cable set/flexible connection cable set need to be ordered separately.

AC Input

DC Input

EtherCAT Multi-Axis Driver



#### ●Example of System Configuration Pricing

| AZ Series |          |                         |  |
|-----------|----------|-------------------------|--|
| Motor     | Driver   | Connection Cable<br>Set |  |
| AZM66MC   | AZD-CD   | CC030VZFB               |  |
| \$565.00  | \$588.00 | \$82.00                 |  |

|   |                           | Accessories       |                                                         |
|---|---------------------------|-------------------|---------------------------------------------------------|
| + | Motor<br>Mounting Bracket | Flexible Coupling | General-Purpose Cables<br>for I/O Signals 1 m (3.3 ft.) |
|   | PAL2P-5                   | MCS201010         | CC16D010B-1                                             |
|   | \$17.00                   | \$50.00           | \$25.00                                                 |

<sup>•</sup> The system configuration shown above is an example. Other combinations are also available.
[Note]

The motor cable and electromagnetic brake cable from the motor cannot be connected directly to the driver. When connecting to a driver, use a connection cable.

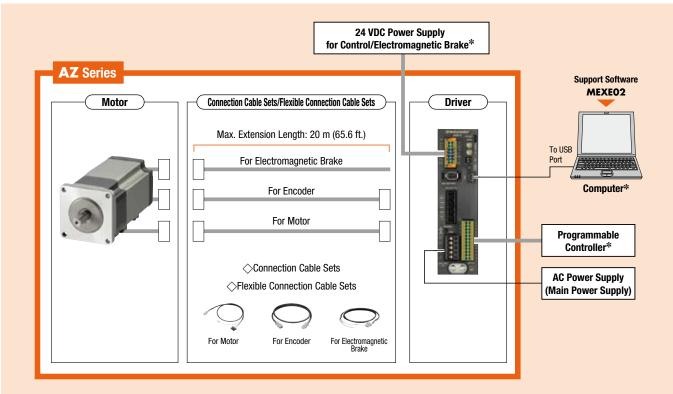
Overview

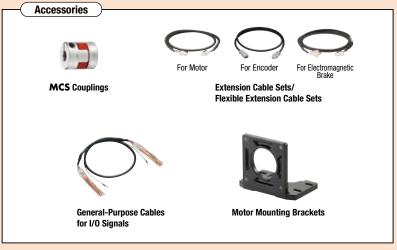
Linear Slides *X*STEP EZS

Cylinders

Rotary Actuators *OSTEP* DGII

*OLSTEP* 


AR


ĆSTEР DRS2

# Hybrid Control System *OSTEP* B-25

#### Combination of Standard Type Motor with an Electromagnetic Brake and Pulse Input Type Driver

An example of a single-axis system configuration with the programmable controller (equipped with the pulse oscillation function) is shown below. Motors, drivers, and a connection cable set/flexible connection cable set need to be ordered separately.







\* Not supplied.

■ The **MEXEO2** can be downloaded from Oriental Motor Website Download Page. For the functions and operating method of this product, refer to the operating manuals (Driver Edition and Function Edition).

The OPERATING MANUAL Driver Edition is included in the product, but the OPERATING MANUAL Function Edition is not included. For detail, contact the nearest Oriental Motor sales office or download from Oriental Motor Website Download Page. http://www.orientalmotor.com/

#### ●Example of System Configuration Pricing

|          | AZ Series |                         |
|----------|-----------|-------------------------|
| Motor    | Driver    | Connection Cable<br>Set |
| AZM66MC  | AZD-C     | CC030VZFB               |
| \$565.00 | \$531.00  | \$82.00                 |

|            | Accessories               |                   |                                                         |
|------------|---------------------------|-------------------|---------------------------------------------------------|
| Controller | Motor<br>Mounting Bracket | Flexible Coupling | General-Purpose Cables<br>for I/O Signals 1 m (3.3 ft.) |
| SCX11      | PAL2P-5                   | MCS201010         | CC16D010B-1                                             |
| \$349.00   | \$17.00                   | \$50.00           | \$25.00                                                 |

The system configuration shown above is an example. Other combinations are also available. Note

The motor cable and electromagnetic brake cable from the motor cannot be connected directly to the driver. When connecting to a driver, use a connection cable.

# Product Number

Motor

1

AC Input

**AZM** 6 2 6 A 3

4

DC Input

**EtherCAT** 

Multi-Axis Driver ♦TS, PS, HPG, Harmonic Geared Type

AZM 6 6 C - HP 15 1 2 3 4 (5) 7 8 6

Driver

AZD - C 2 1 3

Connection Cable Sets/Flexible Connection Cable Sets

CC 050 V Z 1 2 3 4 5 6

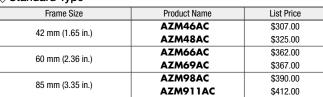
| 1   | Series Name                 | AZM: AZ Series Motor                                      |  |
|-----|-----------------------------|-----------------------------------------------------------|--|
|     | Motor Frame Size            | 4: 42 mm (1.65 in.) [HPG Geared Type is 40 mm (1.57 in.)] |  |
| 2   |                             | <b>6</b> : 60 mm (2.36 in.)                               |  |
|     |                             | 9: 85 mm (3.35 in.)[Geared type is 90 mm (3.54 in.)]      |  |
| 3   | Motor Case Length           |                                                           |  |
| 4   | Motor Shaft Features        | A: Single Shaft M: with Electromagnetic Brake             |  |
| (5) | Motor Power Supply<br>Input | C: AC Power Supply Input Type                             |  |
|     | Geared Type                 | TS: TS Geared Type                                        |  |
| (6) |                             | PS: PS Geared Type                                        |  |
| 0   |                             | HP: HPG Geared Type                                       |  |
|     |                             | HS: Harmonic Geared Type                                  |  |
| 7   | Gear Ratio                  |                                                           |  |
| (8) | Output Shaft Type           | HPG Geared Type                                           |  |
| (e) |                             | Blank: Shaft Output F: Flange Output                      |  |

| <u></u> | Power Supply Input    | A: Single-Phase 100-120 VAC                                                          |
|---------|-----------------------|--------------------------------------------------------------------------------------|
| 2       |                       | C: Single-Phase/Three-Phase 200-240 VAC                                              |
|         | Туре                  | D: Built-in Controller Type                                                          |
| 3       |                       | X: Pulse Input Type with RS-485 Communication                                        |
|         |                       | Blank: Pulse Input Type                                                              |
|         |                       |                                                                                      |
| 1       |                       | CC: Cable                                                                            |
|         | Length                | <b>010</b> : 1 m (3.3 ft.) <b>020</b> : 2 m (6.6 ft.) <b>030</b> : 3 m (9.8 ft.)     |
| 2       |                       | <b>050</b> : 5 m (16.4 ft.) <b>070</b> : 7 m (23.0 ft.) <b>100</b> : 10 m (32.8 ft.) |
|         |                       | <b>150</b> : 15 m (49.2 ft.) <b>200</b> : 20 m (65.6 ft.)                            |
| 3       | Reference Number      |                                                                                      |
| 4       | Applicable Model      | Z: AZ Series                                                                         |
| <u></u> | Cable Type            | F: Connection Cable Set                                                              |
| (5)     |                       | R: Flexible Connection Cable Set                                                     |
| •       | Electromagnetic Brake | Blank: without Electromagnetic Brake                                                 |
| 6       |                       | B: with Electromagnetic Brake                                                        |

AZD: AZ Series Driver

Driver Type

Overview


# Hybrid Control System *QSTEP* B-27

#### Product Line

Motors, drivers, and connection cables must be ordered separately.

#### Motor

#### 





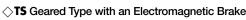
♦ Standard Type with an Electromagnetic Brake

| Frame Size       | Product Name | List Price |
|------------------|--------------|------------|
| 42 mm (1.65 in.) | AZM46MC      | \$466.00   |
| 60 mm (2.36 in.) | AZM66MC      | \$565.00   |
|                  | AZM69MC      | \$571.00   |
| 85 mm (3.35 in.) | AZM98MC      | \$616.00   |



Linear Slides

Cylinders *QsтеР* **DRS2** 

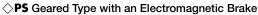

Rotary Actuators *OCSTEP* **DGII** 

*O*STEP AR



#### △TS Geared Type

| Frame Size       | Product Name  | List Price |
|------------------|---------------|------------|
|                  | AZM46AC-TS3.6 | \$441.00   |
|                  | AZM46AC-TS7.2 | \$441.00   |
| 42 mm (1.65 in.) | AZM46AC-TS10  | \$457.00   |
|                  | AZM46AC-TS20  | \$457.00   |
|                  | AZM46AC-TS30  | \$457.00   |
|                  | AZM66AC-TS3.6 | \$519.00   |
|                  | AZM66AC-TS7.2 | \$519.00   |
| 60 mm (2.36 in.) | AZM66AC-TS10  | \$534.00   |
|                  | AZM66AC-TS20  | \$534.00   |
|                  | AZM66AC-TS30  | \$534.00   |
|                  | AZM98AC-TS3.6 | \$573.00   |
|                  | AZM98AC-TS7.2 | \$573.00   |
| 90 mm (3.54 in.) | AZM98AC-TS10  | \$589.00   |
|                  | AZM98AC-TS20  | \$589.00   |
|                  | AZM98AC-TS30  | \$589.00   |




| Frame Size       | Product Name  | List Price |
|------------------|---------------|------------|
|                  | AZM46MC-TS3.6 | \$599.00   |
|                  | AZM46MC-TS7.2 | \$599.00   |
| 42 mm (1.65 in.) | AZM46MC-TS10  | \$615.00   |
|                  | AZM46MC-TS20  | \$615.00   |
|                  | AZM46MC-TS30  | \$615.00   |
|                  | AZM66MC-TS3.6 | \$722.00   |
|                  | AZM66MC-TS7.2 | \$722.00   |
| 60 mm (2.36 in.) | AZM66MC-TS10  | \$738.00   |
|                  | AZM66MC-TS20  | \$738.00   |
|                  | AZM66MC-TS30  | \$738.00   |
|                  | AZM98MC-TS3.6 | \$799.00   |
|                  | AZM98MC-TS7.2 | \$799.00   |
| 90 mm (3.54 in.) | AZM98MC-TS10  | \$815.00   |
|                  | AZM98MC-TS20  | \$815.00   |
|                  | AZM98MC-TS30  | \$815.00   |



#### ◇PS Geared Type

| Frame Size       | Product Name  | List Price |
|------------------|---------------|------------|
| 40 (4.05 !)      | AZM46AC-PS5   | \$567.00   |
|                  | AZM46AC-PS7.2 | \$567.00   |
|                  | AZM46AC-PS10  | \$567.00   |
| 42 mm (1.65 in.) | AZM46AC-PS25  | \$624.00   |
|                  | AZM46AC-PS36  | \$624.00   |
|                  | AZM46AC-PS50  | \$624.00   |
|                  | AZM66AC-PS5   | \$678.00   |
|                  | AZM66AC-PS7.2 | \$678.00   |
| (0.00.1.)        | AZM66AC-PS10  | \$678.00   |
| 60 mm (2.36 in.) | AZM66AC-PS25  | \$757.00   |
|                  | AZM66AC-PS36  | \$757.00   |
|                  | AZM66AC-PS50  | \$757.00   |
|                  | AZM98AC-PS5   | \$785.00   |
|                  | AZM98AC-PS7.2 | \$785.00   |
| 90 mm (3.54 in.) | AZM98AC-PS10  | \$785.00   |
|                  | AZM98AC-PS25  | \$921.00   |
|                  | AZM98AC-PS36  | \$921.00   |
|                  | AZM98AC-PS50  | \$921.00   |



| Frame Size       | Product Name  | List Price |
|------------------|---------------|------------|
|                  | AZM46MC-PS5   | \$725.00   |
|                  | AZM46MC-PS7.2 | \$725.00   |
| 40 mm (1 65 in ) | AZM46MC-PS10  | \$725.00   |
| 42 mm (1.65 in.) | AZM46MC-PS25  | \$782.00   |
|                  | AZM46MC-PS36  | \$782.00   |
|                  | AZM46MC-PS50  | \$782.00   |
|                  | AZM66MC-PS5   | \$881.00   |
|                  | AZM66MC-PS7.2 | \$881.00   |
| 60 mm (0.26 in ) | AZM66MC-PS10  | \$881.00   |
| 60 mm (2.36 in.) | AZM66MC-PS25  | \$961.00   |
|                  | AZM66MC-PS36  | \$961.00   |
|                  | AZM66MC-PS50  | \$961.00   |
|                  | AZM98MC-PS5   | \$1,011.00 |
|                  | AZM98MC-PS7.2 | \$1,011.00 |
| 00 mm (0.54 in ) | AZM98MC-PS10  | \$1,011.00 |
| 90 mm (3.54 in.) | AZM98MC-PS25  | \$1,147.00 |
|                  | AZM98MC-PS36  | \$1,147.00 |
|                  | AZM98MC-PS50  | \$1,147.00 |





#### ♦ HPG Geared Type

inpu

DC Input

EtherCAT Multi-Axis Driver

# ♦ HPG Geared Type with an Electromagnetic Brake





| Frame Size Product Name |               | List Price |
|-------------------------|---------------|------------|
|                         | AZM46AC-HP5   | \$669.00   |
| 40 mm (1 E7 in )        | AZM46AC-HP5F  | \$658.00   |
| 40 mm (1.57 in.)        | AZM46AC-HP9   | \$669.00   |
|                         | AZM46AC-HP9F  | \$658.00   |
|                         | AZM66AC-HP5   | \$904.00   |
| 60 mm (2.36 in.)        | AZM66AC-HP5F  | \$887.00   |
| 60 IIIII (2.36 III.)    | AZM66AC-HP15  | \$1,070.00 |
|                         | AZM66AC-HP15F | \$1,053.00 |
|                         | AZM98AC-HP5   | \$1,139.00 |
| 90 mm (3.54 in.)        | AZM98AC-HP5F  | \$1,116.00 |
| 90 mm (3.34 m.)         | AZM98AC-HP15  | \$1,264.00 |
|                         | A7MQ8AC-HP15F | \$1 242 00 |

#### Frame Size Product Name List Price AZM46MC-HP5 \$827.00 AZM46MC-HP5F \$816.00 40 mm (1.57 in.) AZM46MC-HP9 \$827.00 AZM46MC-HP9F \$816.00 AZM66MC-HP5 \$1,107.00 AZM66MC-HP5F \$1,090.00 60 mm (2.36 in.) AZM66MC-HP15 \$1,274.00 AZM66MC-HP15F \$1,257.00 AZM98MC-HP5 \$1,365.00 AZM98MC-HP5F \$1,342.00 90 mm (3.54 in.) AZM98MC-HP15 \$1,490.00

AZM98MC-HP15F

#### ♦ Harmonic Geared Type

| ,          | ,                    |               |            |
|------------|----------------------|---------------|------------|
| Frame Size |                      | Product Name  | List Price |
| _          | 42 mm (1.65 in.)     | AZM46AC-HS50  | \$901.00   |
|            | 42 11111 (1.03 111.) | AZM46AC-HS100 | \$901.00   |
| _          | 60 mm (0.06 in )     | AZM66AC-HS50  | \$1,215.00 |
|            | 60 mm (2.36 in.)     | AZM66AC-HS100 | \$1,215.00 |
|            | 00 mm (2 E4 in )     | AZM98AC-HS50  | \$1,458.00 |
|            | 90 mm (3.54 in.)     | AZM98AC-HS100 | \$1,458.00 |

#### ♦ Harmonic Geared Type with an Electromagnetic Brake



\$1,468.00

| Product Name  | List Price                                                                     |
|---------------|--------------------------------------------------------------------------------|
| AZM46MC-HS50  | \$1,059.00                                                                     |
| AZM46MC-HS100 | \$1,059.00                                                                     |
| AZM66MC-HS50  | \$1,418.00                                                                     |
| AZM66MC-HS100 | \$1,418.00                                                                     |
| AZM98MC-HS50  | \$1,684.00                                                                     |
| AZM98MC-HS100 | \$1,684.00                                                                     |
|               | AZM46MC-H550<br>AZM46MC-H5100<br>AZM66MC-H550<br>AZM66MC-H5100<br>AZM98MC-H550 |



#### Driver

#### **♦** Built-in Controller Type

| <br>                                 |              |            |
|--------------------------------------|--------------|------------|
| Power Supply Input                   | Product Name | List Price |
| Single-Phase 100-120 VAC             | AZD-AD       | \$588.00   |
| Single-Phase/Three-Phase 200-240 VAC | AZD-CD       | \$588.00   |

#### ◇Pulse Input Type with RS-485 Communication



| Power Supply Input                   | Product Name | List Price |
|--------------------------------------|--------------|------------|
| Single-Phase 100-120 VAC             | AZD-AX       | \$588.00   |
| Single-Phase/Three-Phase 200-240 VAC | AZD-CX       | \$588.00   |



#### 

| Power Supply Input                   | Product Name | List Price |
|--------------------------------------|--------------|------------|
| Single-Phase 100-120 VAC             | AZD-A        | \$531.00   |
| Single-Phase/Three-Phase 200-240 VAC | AZD-C        | \$531.00   |

# Hybrid Control System *QSTEP*

#### Connection Cable Sets/Flexible Connection Cable Sets

Use a flexible connection cable set if the cable will be bent. We also offer extension cables and flexible extension cables that can be added to a connection cable.

The motor cable and electromagnetic brake cable from the motor cannot be connected directly to the driver. When connecting to a driver, use a connection cable.



## Electromagnetic Brake

Product Line

Connection Cable Sets

Flexible

Connection Cable Sets



Length L m (ft.)

1 (3.3)

2 (6.6) 3 (9.8)

5 (16.4)

7 (23.0)

10 (32.8)

15 (49.2)

20 (65.6)

1 (3.3)

2 (6.6)

3 (9.8)

5 (16.4)

7 (23.0)

10 (32.8)

15 (49.2)

20 (65.6)



**Product Name** 

CC010VZFB

CC020VZFB

CC030VZFB

CC050VZFB

CC070VZFB

CC100VZFB

CC150VZFB

CC200VZFB

CC010VZRB

CC020VZRB

CC030VZRB

CC050VZRB

CC070VZRB

CC100VZRB

CC150VZRB

CC200VZRB



\$52.00

\$67.00

\$82.00

\$135.00

\$166.00

\$213.00

\$293.00

\$372.00

\$114.00

\$134.00

\$151.00

\$191.00

\$240.00

\$311.00

\$432.00

\$551.00

Overview

For Electromagnetic Brake Linear List Price

Slides

CSTEP

EZS

Cylinders

Cylinders **Й**STEP DR\$2

Rotary Actuators *OCSTEP* **DGII** 

*OLSTEP* AR

# 

| *         |           | df |
|-----------|-----------|----|
| For Motor | For Encod | er |

| i oi motor, Encode                | <b>~</b> 1     | 101 1110101  |            |
|-----------------------------------|----------------|--------------|------------|
| Product Line                      | Length m (ft.) | Product Name | List Price |
|                                   | 1 (3.3)        | CC010VZF     | \$35.00    |
|                                   | 2 (6.6)        | CC020VZF     | \$50.00    |
|                                   | 3 (9.8)        | CC030VZF     | \$62.00    |
| Connection Cable Sets             | 5 (16.4)       | CC050VZF     | \$110.00   |
| Connection Cable Sets             | 7 (23.0)       | CC070VZF     | \$136.00   |
|                                   | 10 (32.8)      | CC100VZF     | \$176.00   |
|                                   | 15 (49.2)      | CC150VZF     | \$243.00   |
|                                   | 20 (65.6)      | CC200VZF     | \$310.00   |
|                                   | 1 (3.3)        | CC010VZR     | \$84.00    |
|                                   | 2 (6.6)        | CC020VZR     | \$99.00    |
| Flexible<br>Connection Cable Sets | 3 (9.8)        | CC030VZR     | \$111.00   |
|                                   | 5 (16.4)       | CC050VZR     | \$141.00   |
|                                   | 7 (23.0)       | CC070VZR     | \$180.00   |
|                                   | 10 (32.8)      | CC100VZR     | \$236.00   |
|                                   | 15 (49.2)      | CC150VZR     | \$332.00   |
|                                   | 20 (65.6)      | CC200VZR     | \$426.00   |

# Included

#### Motor

| Туре          | Included                    | Parallel<br>Key | Motor<br>Mounting Screw | Operating<br>Manual |
|---------------|-----------------------------|-----------------|-------------------------|---------------------|
| Standard      |                             | _               | _                       |                     |
|               | Frame Size 42 mm (1.65 in.) | _               | _                       |                     |
| TS Geared     | Frame Size 60 mm (2.36 in.) | 1 pc.           | M4×60 P0.7 (4 Screws)   |                     |
|               | Frame Size 90 mm (3.54 in.) | 1 pc.           | M8×90 P1.25 (4 Screws)  | 1 Conv              |
| PS Geared     |                             | 1 pc.           | -                       | 1 Copy              |
| HPG Geared    | Shaft Output                | 1 pc.           | -                       |                     |
| nrg dealed    | Flange Output               | _               | -                       |                     |
| Harmonic Gear | red                         | 1 pc.           | -                       |                     |

<sup>•</sup> For product functions and operating methods, refer to the operating manual (for functions). The operating manual for functions is not included with the product. Please contact the nearest Oriental Motor sales office, or download it from the Oriental Motor website.

#### Driver

| Type                | Connector                                                                                                    | Operating<br>Manual |
|---------------------|--------------------------------------------------------------------------------------------------------------|---------------------|
| Common to All types | CN4 Connector (1 pc.)     CN1 Connector (1 pc.)     CN5 Connector (1 pc.)     Connector wiring Lever (1 pc.) | 1 Copy              |

## Connection Cable Sets/Flexible Connection Cable Sets

| Type                          | Operating Manual |
|-------------------------------|------------------|
| Connection Cable Set          | _                |
| Flexible Connection Cable Set | 1 Copy           |

# Standard Type Frame Size 42 mm (1.65 in.), 60 mm (2.36 in.), 85 mm (3.35 in.)

# Specifications

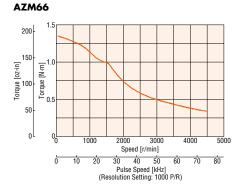
**71**°C €

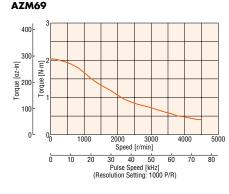
AC Input

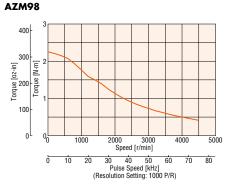
**B-30** 

DC Input

EtherCAT Multi-Axis Driver


| Motor Draduct Name                | Single Shaft                           |                              | AZM46AC                                                                            | AZM48AC                                                                        | AZM66AC                                                    | AZM69AC                                                    | AZM98AC                                                      | AZM911AC                   |  |
|-----------------------------------|----------------------------------------|------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|----------------------------|--|
| Motor Product Name                | with Electromagnet                     | ic Brake                     | AZM46MC                                                                            | -                                                                              | AZM66MC                                                    | AZM69MC                                                    | AZM98MC                                                      | _                          |  |
|                                   | Built-in Controller T                  | уре                          | A                                                                                  | AZD-AD(Single-Phase 100-120 VAC), AZD-CD(Single-Phase/Three-Phase 200-240 VAC) |                                                            |                                                            |                                                              |                            |  |
| <b>Driver Product Name</b>        | Pulse Input Type wi                    | th RS-485 Communication      | A                                                                                  | <b>ZD-AX</b> (Single-Phase                                                     | e 100-120 VAC), <b>AZD</b>                                 | -CX(Single-Phase/Th                                        | ree-Phase 200-240 VA                                         | C)                         |  |
|                                   | Pulse Input Type                       |                              |                                                                                    | AZD-A(Single-Phase                                                             | e 100-120 VAC), <b>AZD</b>                                 | -C(Single-Phase/Thre                                       | e-Phase 200-240 VAC)                                         |                            |  |
| Maximum Holding Torque N⋅m (oz-in |                                        |                              | 0.3 (42)                                                                           | 0.77 (109)                                                                     | 1.2 (170)                                                  | 2 (280)                                                    | 2 (280)                                                      | 4 (560)                    |  |
| Holding Torque at                 | Power On                               | N·m (oz-in)                  | 0.15 (21)                                                                          | 0.38 (53)                                                                      | 0.6 (85)                                                   | 1 (142)                                                    | 1 (142)                                                      | 2 (280)                    |  |
| Motor Standstill                  | with Electromagnetic Brake N·m (oz-in) |                              | 0.15 (21)                                                                          | _                                                                              | 0.6 (85)                                                   | 1 (142)                                                    | 1 (142)                                                      | _                          |  |
| Rotor Inertia                     | J: kg·m² (oz-in²)                      |                              | 55×10 <sup>-7</sup> (0.30)<br>[71×10 <sup>-7</sup> (0.39)]*1                       | 115×10 <sup>-7</sup> (0.63)                                                    | 370×10 <sup>-7</sup> (2)<br>[530×10 <sup>-7</sup> (2.9)]*1 | 740×10 <sup>-7</sup> (4)<br>[900×10 <sup>-7</sup> (4.9)]*1 | 1090×10 <sup>-7</sup> (6)<br>[1250×10 <sup>-7</sup> (6.8)]*1 | 2200×10 <sup>-7</sup> (12) |  |
| Resolution                        |                                        | Resolution Setting: 1000 P/R | 0.36°/Pulse                                                                        |                                                                                |                                                            |                                                            |                                                              |                            |  |
|                                   | Voltage and Freque                     | ncy                          | Single-Phase 100-120 VAC, Single-Phase/Three-Phase 200-240 VAC -15 to +6% 50/60 Hz |                                                                                |                                                            |                                                            |                                                              |                            |  |
| Power Supply                      |                                        | Single-Phase 100-120 VAC     | 2.7                                                                                | 2.7                                                                            | 3.8                                                        | 5.4                                                        | 5.5                                                          | 6.4                        |  |
| Input                             | Input Current -                        | Single-Phase 200-240 VAC     | 1.7                                                                                | 1.6                                                                            | 2.3                                                        | 3.3                                                        | 3.3                                                          | 3.9                        |  |
|                                   |                                        | Three-Phase 200-240 VAC      | 1.0                                                                                | 1.0                                                                            | 1.4                                                        | 2.0                                                        | 2.0                                                          | 2.3                        |  |
| Control Power Supp                | ly                                     |                              | 24 VDC ±5%*2<br>0.25 A [0.33 A]*1                                                  | 24 VDC ±5%<br>0.25 A                                                           | 24 VDC ±5%*2<br>0.25A [0.5 A]*1                            |                                                            |                                                              |                            |  |


For detailed information about standards, please see the Oriental Motor website.


# Speed - Torque Characteristics (Reference Values)













#### Note

 $<sup>\*1</sup>$  The bracket [ ] indicates the value for the product with an electromagnetic brake.

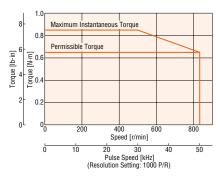
<sup>\*2</sup> For the type with an electromagnetic brake, 24 VDC±4% specification applies if the wiring distance between the motor and driver is extended to 20 m (65.6 ft.) using a cable.

Data for the speed – torque characteristics is based on Oriental Motor's internal measurement conditions. If the conditions are changed, the characteristics may also change as a result.

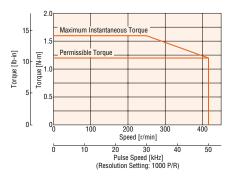
Depending on the driving conditions, a considerable amount of heat may be generated by the motor. To protect the absolute sensor, be sure to keep the motor case temperature at 80°C (176°F) max. (When conforming to the UL Standards, the temperature of the motor case must be kept at 75°C (167°F) max., since the motor is recognized as heat-resistant class A.)

# TS Geared Type Frame Size 42 mm (1.65 in.)

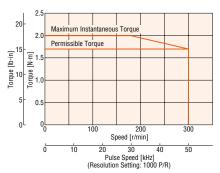
# Specifications


**71**°C €

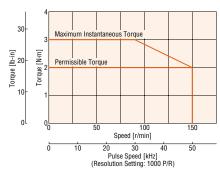
| Mater Deadwat Name                      | Single Shaft                     |                          | AZM46AC-TS3.6                                                                | AZM46AC-TS7.2            | AZM46AC-TS10                                        | AZM46AC-TS20             | AZM46AC-TS30 |  |  |
|-----------------------------------------|----------------------------------|--------------------------|------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------|--------------------------|--------------|--|--|
| Motor Product Name                      | with Electromagnetic             | Brake                    | AZM46MC-TS3.6                                                                | AZM46MC-TS7.2            | AZM46MC-TS10                                        | AZM46MC-TS20             | AZM46MC-TS30 |  |  |
|                                         | Built-in Controller Ty           | ре                       | AZD-                                                                         | -AD(Single-Phase 100-12  | O VAC), AZD-CD(Single-I                             | Phase/Three-Phase 200-24 | 10 VAC)      |  |  |
| <b>Driver Product Name</b>              | Pulse Input Type with            | n RS-485 Communication   | AZD-                                                                         | AX(Single-Phase 100-120  | VAC), <b>AZD-CX</b> (Single-F                       | Phase/Three-Phase 200-2  | 40 VAC)      |  |  |
|                                         | Pulse Input Type                 |                          | AZD-A(Single-Phase 100-120 VAC), AZD-C(Single-Phase/Three-Phase 200-240 VAC) |                          |                                                     |                          |              |  |  |
| Maximum Holding T                       | Maximum Holding Torque N⋅m (oz-i |                          |                                                                              | 1.2 (170)                | 1.7 (240)                                           | 2 (280)                  | 2.3 (320)    |  |  |
| Rotor Inertia                           |                                  | J: kg·m² (oz-in²)        |                                                                              | 55×                      | 10 <sup>-7</sup> (0.30) [71×10 <sup>-7</sup> (0.39) | ]*1                      |              |  |  |
| Gear Ratio                              |                                  |                          | 3.6                                                                          | 7.2                      | 10                                                  | 20                       | 30           |  |  |
| Resolution Resolution Setting: 1000 P/R |                                  |                          | 0.1°/Pulse                                                                   | 0.05°/Pulse              | 0.036°/Pulse                                        | 0.018°/Pulse             | 0.012°/Pulse |  |  |
| Permissible Torque                      | Permissible Torque N·m (oz-in)   |                          |                                                                              | 1.2 (170)                | 1.7 (240)                                           | 2 (280)                  | 2.3 (320)    |  |  |
| Maximum Instantan                       | eous Torque                      | N⋅m (oz-in)              | 0.85 (120)                                                                   | 1.6 (220)                | 2 (280)                                             | 3 (420)                  |              |  |  |
| Holding Torque at                       | Power On                         | N·m (oz-in)              | 0.54 (76)                                                                    | 1 (142)                  | 1.5 (210)                                           | 1.9 (260)                | 2.2 (310)    |  |  |
| Motor Standstill                        | Electromagnetic Bra              | ke N·m (oz-in)           | 0.54 (76)                                                                    | 1 (142)                  | 1.5 (210)                                           | 1.9 (260)                | 2.2 (310)    |  |  |
| Speed Range                             |                                  | r/min                    | 0 - 833                                                                      | 0 - 416                  | 0 - 300                                             | 0 - 150                  | 0 - 100      |  |  |
| Backlash                                |                                  | arcmin                   | 45 (0.75°)                                                                   | 25 (0                    | .42°)                                               | 15 (0                    | ).25°)       |  |  |
|                                         | Voltage and Frequen              | су                       | Single                                                                       | -Phase 100-120 VAC, Sing | le-Phase/Three-Phase 200                            | -240 VAC -15 to +6% 50   | /60 Hz       |  |  |
| Power Supply                            | Innut Owners                     | Single-Phase 100-120 VAC |                                                                              |                          | 2.7                                                 |                          |              |  |  |
| Input                                   | Input Current —<br>A —           | Single-Phase 200-240 VAC | 1.7                                                                          |                          |                                                     |                          |              |  |  |
|                                         | Λ –                              | Three-Phase 200-240 VAC  |                                                                              |                          | 1.0                                                 |                          |              |  |  |
| Control Power Supp                      | ly                               |                          |                                                                              | 24 V                     | DC ±5% <b>*</b> <sup>2</sup> 0.25 A [0.33 <i>A</i>  | \]*1                     |              |  |  |


For detailed information about standards, please see the Oriental Motor website.

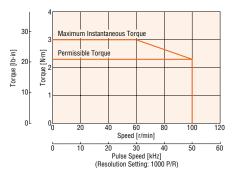
# Speed – Torque Characteristics (Reference Values)


#### AZM46 Gear Ratio 3.6




#### AZM46 Gear Ratio 7.2




#### AZM46 Gear Ratio 10



#### AZM46 Gear Ratio 20



#### AZM46 Gear Ratio 30



#### Note

- Data for the speed torque characteristics is based on Oriental Motor's internal measurement conditions. If the conditions are changed, the characteristics may also change as a result.
- Depending on the driving conditions, a considerable amount of heat may be generated by the motor. To protect the absolute sensor, be sure to keep the motor case temperature at 80°C (176°F) max. (When conforming to the UL Standards, the temperature of the motor case must be kept at 75°C (167°F) max., since the motor is recognized as heat-resistant class A.)

Overview

Slides

CSTEF

Cylinders **Й**STEP DR\$2

Rotary Actuators *OSTEP* DGII

**USTEP** AR

<sup>\*1</sup> The bracket [ ] indicates the value for the product with an electromagnetic brake.

<sup>\*2</sup> For the type with an electromagnetic brake, 24 VDC ±4% specification applies if the wiring distance between the motor and driver is extended to 20 m (65.6 ft.) using a cable.

# TS Geared Type Frame Size 60 mm (2.36 in.)

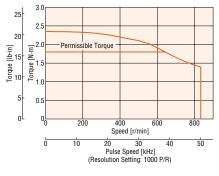
# Specifications

**71**°C €

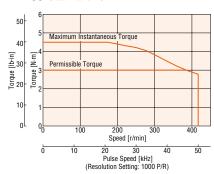
Inpu

**B-32** 

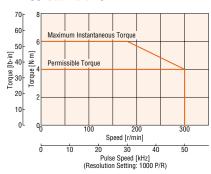
DC Input


EtherCAT Multi-Axis Driver

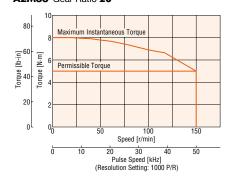
| Motor Product Name                      | Single Shaft                  |                          | AZM66AC-TS3.6                                                                  | AZM66AC-TS7.2                    | AZM66AC-TS10                                        | AZM66AC-TS20            | AZM66AC-TS30 |  |  |
|-----------------------------------------|-------------------------------|--------------------------|--------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------|-------------------------|--------------|--|--|
| Motor Product Name                      | with Electromagneti           | c Brake                  | AZM66MC-TS3.6                                                                  | AZM66MC-TS7.2                    | AZM66MC-TS10                                        | AZM66MC-TS20            | AZM66MC-TS30 |  |  |
|                                         | Built-in Controller Ty        | ре                       | AZD-AD(Single-Phase 100-120 VAC), AZD-CD(Single-Phase/Three-Phase 200-240 VAC) |                                  |                                                     |                         |              |  |  |
| <b>Driver Product Name</b>              | Pulse Input Type wit          | h RS-485 Communication   | AZD-AX(Single-Phase 100-120 VAC), AZD-CX(Single-Phase/Three-Phase 200-240 VAC) |                                  |                                                     |                         |              |  |  |
|                                         | Pulse Input Type              |                          | AZI                                                                            | <b>D-A</b> (Single-Phase 100-120 | VAC), AZD-C(Single-Ph                               | ase/Three-Phase 200-240 | VAC)         |  |  |
| Maximum Holding T                       | orque                         | N·m (lb-in)              | 1.8 (15.9)                                                                     | 3 (26)                           | 4 (35)                                              | 5 (44)                  | 6 (53)       |  |  |
| Rotor Inertia                           |                               | J: kg·m² (oz-in²)        |                                                                                | 370                              | 0×10 <sup>-7</sup> (2) [530×10 <sup>-7</sup> (2.9)] | *1                      |              |  |  |
| Gear Ratio                              |                               |                          | 3.6                                                                            | 7.2                              | 10                                                  | 20                      | 30           |  |  |
| Resolution Resolution Setting: 1000 P/R |                               |                          | 0.1° /Pulse                                                                    | 0.05°/Pulse                      | 0.036°/Pulse                                        | 0.018°/Pulse            | 0.012°/Pulse |  |  |
| Permissible Torque                      | Permissible Torque N·m (lb-in |                          |                                                                                | 3 (26)                           | 4 (35)                                              | 5 (44)                  | 6 (53)       |  |  |
| Maximum Instantan                       | eous Torque*                  | N·m (lb-in)              | *                                                                              | 4.5 (39)                         | 6 (53)                                              | 8 (70)                  | 10 (88)      |  |  |
| Holding Torque at                       | Power On                      | N·m (lb-in)              | 1.3 (11.5)                                                                     | 2.6 (23)                         | 3.7 (32)                                            | 5 (44)                  | 6 (53)       |  |  |
| Motor Standstill                        | Electromagnetic Bra           | ke N·m (lb-in)           | 1.3 (11.5)                                                                     | 2.6 (23)                         | 3.7 (32)                                            | 5 (44)                  | 6 (53)       |  |  |
| Speed Range                             |                               | r/min                    | 0 - 833                                                                        | 0 - 416                          | 0 - 300                                             | 0 - 150                 | 0 - 100      |  |  |
| Backlash                                |                               | arcmin                   | 35 (0.59°)                                                                     | 15 (0                            | .25°)                                               | 10 (0                   | .17°)        |  |  |
|                                         | Voltage and Frequer           | псу                      | Single                                                                         | -Phase 100-120 VAC, Singl        | e-Phase/Three-Phase 200                             | -240 VAC -15 to +6% 50  | /60 Hz       |  |  |
| Power Supply                            | It Ot                         | Single-Phase 100-120 VAC |                                                                                |                                  | 3.8                                                 |                         |              |  |  |
| Input                                   | Input Current –               | Single-Phase 200-240 VAC |                                                                                |                                  | 2.3                                                 |                         |              |  |  |
|                                         | л –                           | Three-Phase 200-240 VAC  |                                                                                |                                  | 1.4                                                 |                         |              |  |  |
| Control Power Supp                      | ly                            |                          |                                                                                | 24 V                             | /DC ±5%*2 0.25 A [0.5 A                             | ]*1                     |              |  |  |


- \*For the geared motor output torque, refer to the speed torque characteristics.
- For detailed information about standards, please see the Oriental Motor website.
- \*1 The bracket [] indicates the value for the product with an electromagnetic brake.
- \*2 For the type with an electromagnetic brake, 24 VDC±4% specification applies if the wiring distance between the motor and driver is extended to 20 m (65.6 ft.) using a cable.

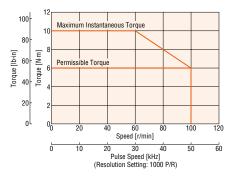
# Speed - Torque Characteristics (Reference Values)


#### AZM66 Gear Ratio 3.6




#### AZM66 Gear Ratio 7.2




AZM66 Gear Ratio 10



## AZM66 Gear Ratio 20



#### AZM66 Gear Ratio 30

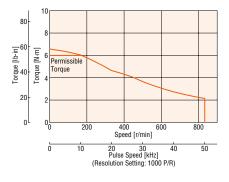


#### Note

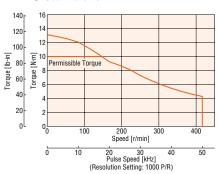
- Data for the speed torque characteristics is based on Oriental Motor's internal measurement conditions. If the conditions are changed, the characteristics may also change as a result.
- Depending on the driving conditions, a considerable amount of heat may be generated by the motor. To protect the absolute sensor, be sure to keep the motor case temperature at 80°C (176°F) max. (When conforming to the UL Standards, the temperature of the motor case must be kept at 75°C (167°F) max., since the motor is recognized as heat-resistant class A.)

# TS Geared Type Frame Size 90 mm (3.54 in.)

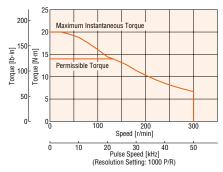
# Specifications


**71**°C €

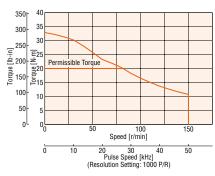
| Mater Desderet Name                    | Single Shaft                     |                          | AZM98AC-TS3.6 | AZM98AC-TS7.2                    | AZM98AC-TS10                                       | AZM98AC-TS20             | AZM98AC-TS30 |
|----------------------------------------|----------------------------------|--------------------------|---------------|----------------------------------|----------------------------------------------------|--------------------------|--------------|
| Motor Product Name                     | with Electromagnetic             | Brake                    | AZM98MC-TS3.6 | AZM98MC-TS7.2                    | AZM98MC-TS10                                       | AZM98MC-TS20             | AZM98MC-TS30 |
|                                        | Built-in Controller Ty           | ре                       | AZD-          | AD(Single-Phase 100-120          | VAC), AZD-CD(Single-                               | Phase/Three-Phase 200-24 | 10 VAC)      |
| <b>Driver Product Name</b>             | Pulse Input Type with            | n RS-485 Communication   | AZD-          | AX(Single-Phase 100-120          | VAC), AZD-CX(Single-I                              | Phase/Three-Phase 200-2  | 40 VAC)      |
|                                        | Pulse Input Type                 |                          | AZI           | <b>D-A</b> (Single-Phase 100-120 | VAC), AZD-C(Single-Ph                              | ase/Three-Phase 200-240  | VAC)         |
| Maximum Holding T                      | Maximum Holding Torque N⋅m (lb-i |                          |               | 10 (88)                          | 14 (123)                                           | 20 (177)                 | 25 (220)     |
| Rotor Inertia                          |                                  | J: kg·m² (oz-in²)        |               | 1090                             | 0×10 <sup>-7</sup> (6) [1250×10 <sup>-7</sup> (6.8 | )]*1                     |              |
| Gear Ratio                             |                                  |                          | 3.6           | 7.2                              | 10                                                 | 20                       | 30           |
| Resolution Resolution Setting: 1000 P/ |                                  |                          | 0.1°/Pulse    | 0.05°/Pulse                      | 0.036°/Pulse                                       | 0.018°/Pulse             | 0.012°/Pulse |
| Permissible Torque                     | Permissible Torque N⋅m (lb-in    |                          |               | 10 (88)                          | 14 (123)                                           | 20 (177)                 | 25 (220)     |
| Maximum Instantan                      | eous Torque*                     | N⋅m (lb-in)              | *             | *                                | 20 (177)                                           | *                        | 45 (390)     |
| Holding Torque at                      | Power On                         | N⋅m (lb-in)              | 3.6 (31)      | 7.2 (63)                         | 10 (88)                                            | 20 (177)                 | 25 (220)     |
| Motor Standstill                       | Electromagnetic Bra              | ke N·m (lb-in)           | 3.6 (31)      | 7.2 (63)                         | 10 (88)                                            | 20 (177)                 | 25 (220)     |
| Speed Range                            |                                  | r/min                    | 0 - 833       | 0 - 416                          | 0 - 300                                            | 0 - 150                  | 0 - 100      |
| Backlash                               |                                  | arcmin                   | 25 (0.42°)    | 15 (0                            | .25°)                                              | 10 (0                    | 1.17°)       |
|                                        | Voltage and Frequen              | су                       | Single        | -Phase 100-120 VAC, Singl        | e-Phase/Three-Phase 200                            | -240 VAC -15 to +6% 50   | /60 Hz       |
| Power Supply                           | 1101                             | Single-Phase 100-120 VAC |               |                                  | 5.5                                                |                          |              |
| Input                                  | Input Current —                  | Single-Phase 200-240 VAC |               |                                  | 3.3                                                |                          |              |
|                                        | м —                              | Three-Phase 200-240 VAC  |               |                                  | 2.0                                                |                          |              |
| Control Power Supp                     | ly                               |                          |               | 24 V                             | /DC ±5%*2 0.25 A [0.5 A                            | ]*1                      |              |


<sup>\*</sup>For the geared motor output torque, refer to the speed - torque characteristics.

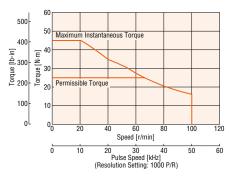
# Speed – Torque Characteristics (Reference Values)


#### AZM98 Gear Ratio 3.6




#### AZM98 Gear Ratio 7.2




## AZM98 Gear Ratio 10



#### AZM98 Gear Ratio 20



#### AZM98 Gear Ratio 30



#### Note

- Data for the speed torque characteristics is based on Oriental Motor's internal measurement conditions. If the conditions are changed, the characteristics may also change as a result.
- Depending on the driving conditions, a considerable amount of heat may be generated by the motor. To protect the absolute sensor, be sure to keep the motor case temperature at 80°C (176°F) max. (When conforming to the UL Standards, the temperature of the motor case must be kept at 75°C (167°F) max., since the motor is recognized as heat-resistant class A.)

Overview

Slides

CSTEP

EZS

Cylinders ЙSTEP DR\$2

Rotary Actuators *OSTEP* DGII

**USTEP** AR

For detailed information about standards, please see the Oriental Motor website.

<sup>\*1</sup> The bracket [] indicates the value for the product with an electromagnetic brake.

<sup>\*2</sup> For the type with an electromagnetic brake, 24 VDC ±4% specification applies if the wiring distance between the motor and driver is extended to 20 m (65.6 ft.) using a cable.

# PS Geared Type Frame Size 42 mm (1.65 in.)

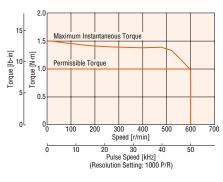
# Specifications

**71**°C €

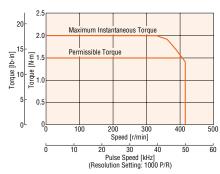
A( Inpu

**B-34** 

DC Input


EtherCAT Multi-Axis Driver

|                            | 0' - 1 - 01 - 0                                                |                              | 47144/46 DCF | 4744/46 DCT 0                                                                  | 47144/46 DC10                | 4744/46 DCOF                  | 4744/46 DCO/         | 47144/46 DCFO |
|----------------------------|----------------------------------------------------------------|------------------------------|--------------|--------------------------------------------------------------------------------|------------------------------|-------------------------------|----------------------|---------------|
| Motor Product Name         | Single Shaft                                                   |                              |              |                                                                                |                              |                               | AZM46AC-PS36         |               |
| motor i roddot ridino      | with Electromagnetic Brake                                     |                              | AZM46MC-PS5  | AZM46MC-PS7.2                                                                  | AZM46MC-PS10                 | AZM46MC-PS25                  | AZM46MC-PS36         | AZM46MC-PS50  |
|                            | Built-in Controller Ty                                         | rpe                          | A            | AZD-AD(Single-Phase 100-120 VAC), AZD-CD(Single-Phase/Three-Phase 200-240 VAC) |                              |                               |                      |               |
| <b>Driver Product Name</b> | Driver Product Name Pulse Input Type with RS-485 Communication |                              |              | ZD-AX(Single-Phase                                                             | 100-120 VAC), <b>AZD</b>     | -CX(Single-Phase/Th           | ree-Phase 200-240 VA | AC)           |
|                            | Pulse Input Type                                               |                              |              | AZD-A(Single-Phase                                                             | 100-120 VAC), <b>AZD</b>     | -C(Single-Phase/Thre          | e-Phase 200-240 VAC) |               |
| Maximum Holding 1          | orque                                                          | N⋅m (oz-in)                  | 1 (142)      | 1.5 (                                                                          | 210)                         | 2.5 (350)                     | 3 (4                 | 20)           |
| Rotor Inertia              |                                                                | J: kg·m² (oz-in²)            |              |                                                                                | 55×10 <sup>-7</sup> (0.3)[71 | I×10 <sup>-7</sup> (0.39)]*1  |                      |               |
| Gear Ratio                 |                                                                |                              | 5            | 7.2                                                                            | 10                           | 25                            | 36                   | 50            |
| Resolution                 |                                                                | Resolution Setting: 1000 P/R | 0.072°/Pulse | 0.05°/Pulse                                                                    | 0.036°/Pulse                 | 0.0144°/Pulse                 | 0.01°/Pulse          | 0.0072°/Pulse |
| Permissible Torque         |                                                                | N⋅m (oz-in)                  | 1 (142)      | 1 (142) 1.5 (210) 2.5 (350)                                                    |                              | 2.5 (350)                     | 3 (420)              |               |
| Maximum Instantar          | eous Torque                                                    | N⋅m (oz-in)                  | 1.5 (210)    | 1.5 (210) 2 (280) 6 (850)                                                      |                              |                               |                      |               |
| Holding Torque at          | Power On                                                       | N⋅m (oz-in)                  | 0.75 (106)   | 1 (142)                                                                        | 1.5 (210)                    | 2.5 (350)                     | 3 (4                 | 20)           |
| Motor Standstill           | Electromagnetic Bra                                            | ke N·m (oz-in)               | 0.75 (106)   | 1 (142)                                                                        | 1.5 (210)                    | 2.5 (350)                     | 3 (4                 | 20)           |
| Speed Range                |                                                                | r/min                        | 0 - 600      | 0 - 416                                                                        | 0 - 300                      | 0 - 120                       | 0 - 83               | 0 - 60        |
| Backlash                   |                                                                | arcmin                       |              |                                                                                | 15 (0                        | ).25°)                        |                      |               |
|                            | Voltage and Frequer                                            | псу                          | Si           | ngle-Phase 100-120 V                                                           | AC, Single-Phase/Thre        | e-Phase 200-240 VAC           | -15 to +6% 50/60 H   | lz            |
| Power Supply               |                                                                | Single-Phase 100-120 VAC     |              |                                                                                | 2                            | .7                            |                      |               |
| Input                      | Input Current -                                                | Single-Phase 200-240 VAC     |              |                                                                                | 1.                           | .7                            |                      |               |
|                            | А –                                                            | Three-Phase 200-240 VAC      |              |                                                                                | 1.                           | .0                            |                      |               |
| Control Power Supp         | ly                                                             |                              |              |                                                                                | 24 VDC ±5%*2 0               | ).25 A [0.33 A] <sup>★1</sup> |                      |               |


<sup>•</sup> For detailed information about standards, please see the Oriental Motor website.

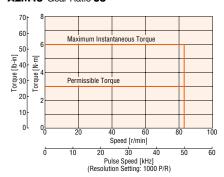
# Speed - Torque Characteristics (Reference Values)

#### AZM46 Gear Ratio 5

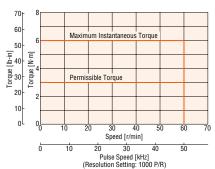



#### AZM46 Gear Ratio 7.2




#### AZM46 Gear Ratio 10




#### AZM46 Gear Ratio 25



#### AZM46 Gear Ratio 36



#### AZM46 Gear Ratio 50



#### Note

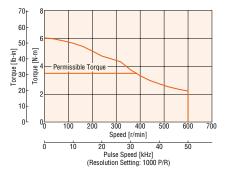
- Data for the speed torque characteristics is based on Oriental Motor's internal measurement conditions. If the conditions are changed, the characteristics may also change as a result.
- Depending on the driving conditions, a considerable amount of heat may be generated by the motor. To protect the absolute sensor, be sure to keep the motor case temperature at 80°C (176°F) max. (When conforming to the UL Standards, the temperature of the motor case must be kept at 75°C (167°F) max., since the motor is recognized as heat-resistant class A.)

 $<sup>\+1</sup>$  The bracket [ ] indicates the value for the product with an electromagnetic brake.

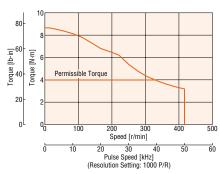
<sup>\*2</sup> For the type with an electromagnetic brake, 24 VDC±4% specification applies if the wiring distance between the motor and driver is extended to 20 m (65.6 ft.) using a cable.

# PS Geared Type Frame Size 60 mm (2.36 in.)

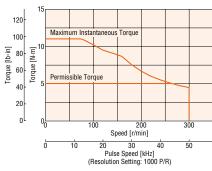
# Specifications


**71**°C €

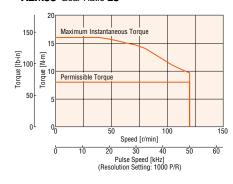
| M.I. B. I. IN              | Single Shaft           |                                         | AZM66AC-PS5                                                                  | AZM66AC-PS7.2        | AZM66AC-PS10                 | AZM66AC-PS25                 | AZM66AC-PS36         | AZM66AC-PS50  |  |
|----------------------------|------------------------|-----------------------------------------|------------------------------------------------------------------------------|----------------------|------------------------------|------------------------------|----------------------|---------------|--|
| Motor Product Name         | with Electromagneti    | ic Brake                                | AZM66MC-PS5                                                                  | AZM66MC-PS7.2        | AZM66MC-PS10                 | AZM66MC-PS25                 | AZM66MC-PS36         | AZM66MC-PS50  |  |
|                            | Built-in Controller Ty | уре                                     | Α                                                                            | ZD-AD(Single-Phase   | e 100-120 VAC), <b>AZD</b>   | -CD(Single-Phase/Th          | ree-Phase 200-240 VA | iC)           |  |
| <b>Driver Product Name</b> | Pulse Input Type wit   | th RS-485 Communication                 | A                                                                            | ZD-AX(Single-Phase   | 100-120 VAC), <b>AZD</b>     | -CX(Single-Phase/Th          | ree-Phase 200-240 VA | AC)           |  |
|                            | Pulse Input Type       |                                         | AZD-A(Single-Phase 100-120 VAC), AZD-C(Single-Phase/Three-Phase 200-240 VAC) |                      |                              |                              |                      |               |  |
| Maximum Holding            | Torque                 | N·m (lb-in)                             | 3.5 (30)                                                                     | 4 (35)               | 5 (44)                       |                              | 8 (70)               |               |  |
| Rotor Inertia              |                        | J: kg·m² (oz-in²)                       |                                                                              |                      | 370×10 <sup>-7</sup> (2) [53 | 30×10 <sup>-7</sup> (2.9)]*1 |                      |               |  |
| Gear Ratio                 |                        |                                         | 5                                                                            | 7.2                  | 10                           | 25                           | 36                   | 50            |  |
| Resolution                 |                        | Resolution Setting: 1000 P/R            | 0.072°/Pulse                                                                 | 0.05°/Pulse          | 0.036°/Pulse                 | 0.0144°/Pulse                | 0.01°/Pulse          | 0.0072°/Pulse |  |
| Permissible Torque         |                        | N·m (lb-in)                             | 3.5 (30)                                                                     | 4 (35)               | 5 (44)                       | 8 (70)                       |                      |               |  |
| Maximum Instantar          | neous Torque*          | N·m (lb-in)                             | *                                                                            | *                    | 11 (97)                      | 16 (141) 20 (177)            |                      |               |  |
| Holding Torque at          | Power On               | N·m (lb-in)                             | 3 (26)                                                                       | 4 (35)               | 5 (44)                       |                              | 8 (70)               |               |  |
| Motor Standstill           | Electromagnetic Bra    | ake N·m (lb-in)                         | 3 (26)                                                                       | 4 (35)               | 5 (44)                       |                              | 8 (70)               |               |  |
| Speed Range                |                        | r/min                                   | 0 - 600                                                                      | 0 - 416              | 0 - 300                      | 0 - 120                      | 0 - 83               | 0 - 60        |  |
| Backlash                   |                        | arcmin                                  |                                                                              | 7 (0.12°)            |                              |                              | 9 (0.15°)            |               |  |
|                            | Voltage and Frequer    | ncy                                     | S                                                                            | ngle-Phase 100-120 \ | AC, Single-Phase/Thre        | e-Phase 200-240 VAC          | C -15 to +6% 50/60 H | łz            |  |
| Power Supply               | Innut Current          | Single-Phase 100-120 VAC                |                                                                              |                      | 3.                           | .8                           |                      |               |  |
| Input                      | Input Current –        | Single-Phase 200-240 VAC                |                                                                              |                      | 2.                           | .3                           |                      |               |  |
|                            | Α —                    | Three-Phase 200-240 VAC                 |                                                                              |                      | 1.                           | .4                           |                      |               |  |
| Control Power Supp         | oly                    |                                         |                                                                              |                      | 24 VDC ±5%*2                 | 0.25 A [0.5 A]*1             |                      |               |  |
|                            |                        | . Comba the server of the server of the |                                                                              |                      |                              |                              |                      |               |  |


<sup>\*</sup>For the geared motor output torque, refer to the speed - torque characteristics.

# Speed - Torque Characteristics (Reference Values)



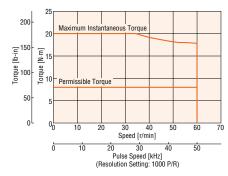




#### AZM66 Gear Ratio 7.2




# AZM66 Gear Ratio 10




#### AZM66 Gear Ratio 25



#### AZM66 Gear Ratio 36



#### AZM66 Gear Ratio 50



#### Note

- Data for the speed torque characteristics is based on Oriental Motor's internal measurement conditions. If the conditions are changed, the characteristics may also change as a result.
- Depending on the driving conditions, a considerable amount of heat may be generated by the motor. To protect the absolute sensor, be sure to keep the motor case temperature at 80°C (176°F) max. (When conforming to the UL Standards, the temperature of the motor case must be kept at 75°C (167°F) max., since the motor is recognized as heat-resistant class A.)

Overview

Slides

CSTEP

EZS

Cylinders ЙSTEP DR\$2

Rotary Actuators *OCSTEP* **DGII** 

**USTEP** AR

<sup>•</sup> For detailed information about standards, please see the Oriental Motor website.

<sup>\*1</sup> The bracket [] indicates the value for the product with an electromagnetic brake.

<sup>\*2</sup> For the type with an electromagnetic brake, 24 VDC±4% specification applies if the wiring distance between the motor and driver is extended to 20 m (65.6 ft.) using a cable.

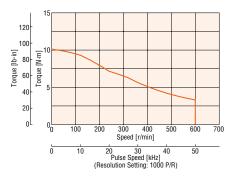
# PS Geared Type Frame Size 90 mm (3.54 in.)

# Specifications

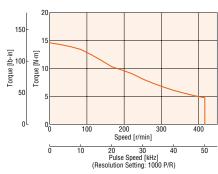
**71**°C €

Inpu

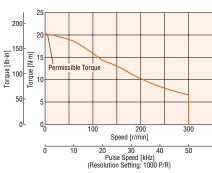
DC Input


EtherCAT Multi-Axis Driver

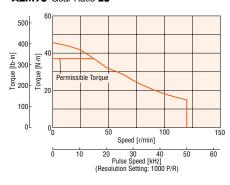
|                                 | Single Shaft            |                              | Δ7M98ΔC-PS5                                                                  | Δ7M98ΔC-PS7.2                                                      | A7M98AC-PS10                  | Δ7M98ΔC-PS25                  | AZM98AC-PS36         | Δ7M98ΔC-PS50  |  |  |
|---------------------------------|-------------------------|------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------|-------------------------------|----------------------|---------------|--|--|
| Motor Product Name              | with Electromagnetic    | Brake                        |                                                                              |                                                                    |                               |                               | AZM98MC-PS36         |               |  |  |
|                                 | Built-in Controller Typ |                              |                                                                              |                                                                    |                               |                               | ree-Phase 200-240 VA |               |  |  |
| Driver Product Name             |                         | RS-485 Communication         |                                                                              | AZD-AX(Single-Phase 100-120 VAC), AZD-CX(Single-Phase 200-240 VAC) |                               |                               |                      |               |  |  |
| 2or r.oudot namo                | Pulse Input Type        | Tio Too communication        | AZD-A(Single-Phase 100-120 VAC), AZD-C(Single-Phase/Three-Phase 200-240 VAC) |                                                                    |                               |                               |                      |               |  |  |
| Maximum Holding T               |                         | N·m (lb-in)                  |                                                                              | 14 (123)                                                           | 20 (177)                      | - C(g)                        | 37 (320)             |               |  |  |
| Rotor Inertia J: kg·m² (oz-in²) |                         |                              | 10 (00)                                                                      | 1 (120)                                                            | 1090×10 <sup>-7</sup> (6) [12 | 250×10 <sup>-7</sup> (6.8)]*1 | (523)                |               |  |  |
| Gear Ratio                      |                         |                              | 5                                                                            | 7.2                                                                | 10                            | 25                            | 36                   | 50            |  |  |
| Resolution                      |                         | Resolution Setting: 1000 P/R | 0.072°/Pulse                                                                 | 0.05°/Pulse                                                        | 0.036°/Pulse                  | 0.0144°/Pulse                 | 0.01°/Pulse          | 0.0072°/Pulse |  |  |
| Permissible Torque              |                         | N·m (lb-in)                  | *                                                                            | *                                                                  | 20 (177)                      | 37 (320)                      |                      |               |  |  |
| Maximum Instantan               | eous Torque*            | N·m (lb-in)                  | *                                                                            | *                                                                  | *                             | * 60 (530)                    |                      |               |  |  |
| Holding Torque at               | Power On                | N·m (lb-in)                  | 5 (44)                                                                       | 7.2 (63)                                                           | 10 (88)                       | 25 (220)                      | 36 (310)             | 37 (320)      |  |  |
| Motor Standstill                | Electromagnetic Brak    | e N·m (lb-in)                | 5 (44)                                                                       | 7.2 (63)                                                           | 10 (88)                       | 25 (220)                      | 36 (310)             | 37 (320)      |  |  |
| Speed Range                     |                         | r/min                        | 0 - 600                                                                      | 0 - 416                                                            | 0 - 300                       | 0 - 120                       | 0 - 83               | 0 - 60        |  |  |
| Backlash                        |                         | arcmin                       |                                                                              | 7 (0.12°)                                                          |                               |                               | 9 (0.15°)            |               |  |  |
|                                 | Voltage and Frequenc    | y                            | Si                                                                           | ingle-Phase 100-120 V                                              | AC, Single-Phase/Thre         | e-Phase 200-240 VAC           | -15 to +6% 50/60 H   | lz            |  |  |
| Power Supply                    | land Ormani             | Single-Phase 100-120 VAC     |                                                                              |                                                                    | 5.                            | 5                             |                      |               |  |  |
| Input                           | Input Current —         | Single-Phase 200-240 VAC     |                                                                              | 3.3                                                                |                               |                               |                      |               |  |  |
|                                 | А —                     | Three-Phase 200-240 VAC      |                                                                              |                                                                    | 2.                            | 0                             |                      |               |  |  |
| Control Power Supp              | ly                      |                              |                                                                              |                                                                    | 24 VDC ±5%*2                  | 0.25 A [0.5 A]*1              |                      |               |  |  |


<sup>\*</sup>For the geared motor output torque, refer to the speed - torque characteristics.

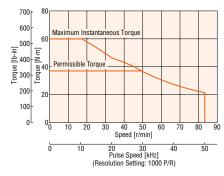
# Speed - Torque Characteristics (Reference Values)



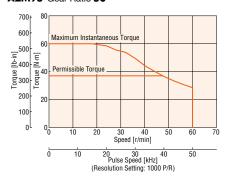




#### AZM98 Gear Ratio 7.2




AZM98 Gear Ratio 10




#### AZM98 Gear Ratio 25



AZM98 Gear Ratio 36



AZM98 Gear Ratio 50



#### Note

- Data for the speed torque characteristics is based on Oriental Motor's internal measurement conditions. If the conditions are changed, the characteristics may also change as a result.
- Depending on the driving conditions, a considerable amount of heat may be generated by the motor. To protect the absolute sensor, be sure to keep the motor case temperature at 80°C (176°F) max. (When conforming to the UL Standards, the temperature of the motor case must be kept at 75°C (167°F) max., since the motor is recognized as heat-resistant class A.)

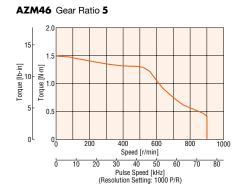
<sup>•</sup> For detailed information about standards, please see the Oriental Motor website.

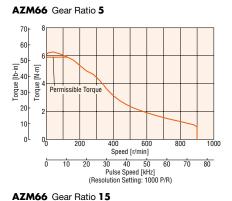
<sup>\*1</sup> The bracket [ ] indicates the value for the product with an electromagnetic brake.

<sup>\*2</sup> For the type with an electromagnetic brake, 24 VDC±4% specification applies if the wiring distance between the motor and driver is extended to 20 m (65.6 ft.) using a cable.

# **HPG** Geared Type Frame Size 40 mm (1.57 in.), 60 mm (2.36 in.), 90 mm (3.54 in.)

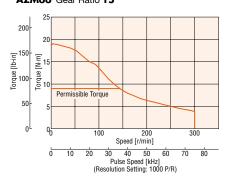
# Specifications


**71**°C €


| Motor Product Name                         | Single Shaft             |                              | AZM46AC-HP5□                                                                  | AZM46AC-HP9□                                                     | AZM66AC-HP5□                                               | AZM66AC-HP15                                               | AZM98AC-HP5□                                               | AZM98AC-HP15□                                              |  |
|--------------------------------------------|--------------------------|------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------|--|
| WOLDI FIDUUCI NAME                         | with Electromagnetic I   | Brake                        | AZM46MC-HP5□                                                                  | AZM46MC-HP9□                                                     | AZM66MC-HP5□                                               | AZM66MC-HP15                                               | AZM98MC-HP5                                                | AZM98MC-HP15                                               |  |
|                                            | Built-in Controller Type | )                            | A                                                                             | ZD-AD(Single-Phase                                               | e 100-120 VAC), <b>AZD</b>                                 | -CD(Single-Phase/Th                                        | ree-Phase 200-240 VA                                       | AC)                                                        |  |
| <b>Driver Product Name</b>                 | Pulse Input Type with    | RS-485 Communication         | A                                                                             | ZD-AX(Single-Phase                                               | 100-120 VAC), <b>AZD</b>                                   | -CX(Single-Phase/Th                                        | ree-Phase 200-240 V                                        | AC)                                                        |  |
|                                            | Pulse Input Type         |                              | AZD-A(Single-Phase 100-120 VAC), AZD-C(Single-Phase/Three-Phase 200-240 VAC)  |                                                                  |                                                            |                                                            |                                                            |                                                            |  |
| Maximum Holding T                          | orque                    | N⋅m (lb-in)                  | 1.5 (13.2)                                                                    | 2.5 (22)                                                         | 5.9 (52)                                                   | 9 (79)                                                     | 10 (88)                                                    | 24 (210)                                                   |  |
| Rotor Inertia                              |                          | J: kg·m² (oz-in²)            | 55×10 <sup>-7</sup> (0.30) [7                                                 | 71×10 <sup>-7</sup> (0.39)]*1                                    | 370×10 <sup>-7</sup> (2) [53                               | 30×10 <sup>-7</sup> (2.9)]*1                               | 1090×10 <sup>-7</sup> (6) [1:                              | 250×10 <sup>-7</sup> (6.8)]*1                              |  |
| Rotor Inertia*2                            |                          | J: kg⋅m² (oz-in²)            | 5.8×10 <sup>-7</sup> (0.032)<br>[4.2×10 <sup>-7</sup> (0.023)]                | 3.4×10 <sup>-7</sup> (0.0186)<br>[2.9×10 <sup>-7</sup> (0.0159)] | 92×10 <sup>-7</sup> (0.50)<br>[86×10 <sup>-7</sup> (0.47)] | 78×10 <sup>-7</sup> (0.43)<br>[77×10 <sup>-7</sup> (0.42)] | 629×10 <sup>-7</sup> (3.4)<br>[589×10 <sup>-7</sup> (3.2)] | 488×10 <sup>-7</sup> (2.7)<br>[488×10 <sup>-7</sup> (2.7)] |  |
| Gear Ratio                                 |                          |                              | 5                                                                             | 9                                                                | 5                                                          | 15                                                         | 5                                                          | 15                                                         |  |
| Resolution                                 |                          | Resolution Setting: 1000 P/R | 0.072°/Pulse                                                                  | 0.04°/Pulse                                                      | 0.072°/Pulse                                               | 0.024°/Pulse                                               | 0.072°/Pulse                                               | 0.024°/Pulse                                               |  |
| Permissible Torque <sup>★</sup> N⋅m (lb-in |                          | N⋅m (lb-in)                  | *                                                                             | 2.5 (22)                                                         | 5.9 (52)                                                   | 9 (79)                                                     | *                                                          | 24 (210)                                                   |  |
| Maximum Instantan                          | eous Torque*             | N⋅m (lb-in)                  | *                                                                             | *                                                                | *                                                          | *                                                          | *                                                          | *                                                          |  |
| Holding Torque at                          | Power On                 | N·m (lb-in)                  | 0.75 (6.6)                                                                    | 1.35 (11.9)                                                      | 3 (26)                                                     | 9 (79)                                                     | 5 (44)                                                     | 15 (132)                                                   |  |
| Motor Standstill                           | Electromagnetic Brake    | N·m (lb-in)                  | 0.75 (6.6)                                                                    | 1.35 (11.9)                                                      | 3 (26)                                                     | 9 (79)                                                     | 5 (44)                                                     | 15 (132)                                                   |  |
| Speed Range                                |                          | r/min                        | 0 - 900                                                                       | 0 - 500                                                          | 0 - 900                                                    | 0 - 300                                                    | 0 - 900                                                    | 0 - 300                                                    |  |
| Backlash                                   |                          | arcmin                       |                                                                               |                                                                  | 3 (0                                                       | .05°)                                                      |                                                            |                                                            |  |
|                                            | Voltage and Frequency    | 1                            | Si                                                                            | ingle-Phase 100-120 V                                            | AC, Single-Phase/Thre                                      | e-Phase 200-240 VAC                                        | -15 to +6% 50/60                                           | Hz                                                         |  |
| Power Supply                               | land Owner               | Single-Phase 100-120 VAC     | 2.                                                                            | .7                                                               | 3                                                          | .8                                                         | 5                                                          | .5                                                         |  |
| Input                                      | Input Current —          | Single-Phase 200-240 VAC     | 1.                                                                            | .7                                                               | 2                                                          | .3                                                         | 3                                                          | .3                                                         |  |
|                                            | м —                      | Three-Phase 200-240 VAC      | 1.                                                                            | .0                                                               | 1.                                                         | .4                                                         | 2.0                                                        |                                                            |  |
| Control Power Supp                         | ly                       |                              | 24 VDC $\pm 5\%^{*4}$ 0.25 A [0.33 A]*1 24 VDC $\pm 5\%^{*4}$ 0.25 A [0.5A]*1 |                                                                  |                                                            |                                                            |                                                            |                                                            |  |
| Output Flange Surfa                        | ice Runout*3             | mm (in.)                     | 0.02 (0.0008)                                                                 |                                                                  |                                                            |                                                            |                                                            |                                                            |  |
| Output Flange Inner                        | Diameter Runout*3        | mm (in.)                     | 0.03 (0                                                                       | 0.0012)                                                          | 0.04 (0.0016)                                              |                                                            |                                                            |                                                            |  |

\*For the geared motor output torque, refer to the speed - torque characteristics.


- lacktriangle For the output flange type, the box  $\Box$  in the product name indicates lacktriangle.
- For detailed information about standards, please see the Oriental Motor website
- \*1 The bracket [ ] indicates the value for the product with an electromagnetic brake.
- \*2 The value is calculated by converting the inertia inside the gear unit into the motor shaft. The bracket [] indicates the value for the flange output type.
- \*3 Indicates the value for the flange output type.
- \*4 For the type with an electromagnetic brake, 24 VDC±4% specification applies if the wiring distance between the motor and driver is extended to 20 m (65.6 ft.) using a cable.


# Speed – Torque Characteristics (Reference Values)













#### Note

- Data for the speed torque characteristics is based on Oriental Motor's internal measurement conditions. If the conditions are changed, the characteristics may also change as a result.
- Depending on the driving conditions, a considerable amount of heat may be generated by the motor. To protect the absolute sensor, be sure to keep the motor case temperature at 80°C (176°F) max. (When conforming to the UL Standards, the temperature of the motor case must be kept at 75°C (167°F) max., since the motor is recognized as heat-resistant class A.)

Overview

Slides

CSTEF

Cylinders **Χ**STEF DRS2

Rotary Actuators **OSTEP DGII** 

**USTEP** AR

# Harmonic Geared Type Frame Size 42 mm (1.65 in.), 60 mm (2.36 in.), 90 mm (3.54 in.)

# Specifications

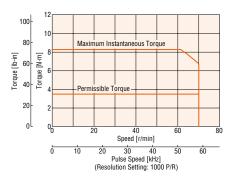
**71**°( €

AC Inpu

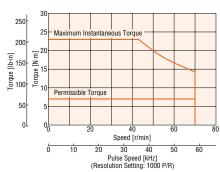
**B-38** 

DC Input

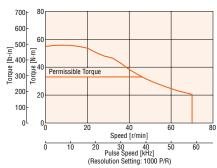
EtherCAT Multi-Axis Driver


| Motor Product Name         | Single Shaft                                                   |                              |                                                                              |                                                                                |                               |                              | AZM98AC-HS50                   |                               |  |
|----------------------------|----------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|------------------------------|--------------------------------|-------------------------------|--|
| motor i roudot marrio      | with Electromagnetic                                           | Brake                        | AZM46MC-HS50                                                                 | AZM46MC-HS100                                                                  | AZM66MC-HS50                  | AZM66MC-HS100                | AZM98MC-HS50                   | AZM98MC-HS100                 |  |
|                            | Built-in Controller Typ                                        | ре                           | A                                                                            | AZD-AD(Single-Phase 100-120 VAC), AZD-CD(Single-Phase/Three-Phase 200-240 VAC) |                               |                              |                                |                               |  |
| <b>Driver Product Name</b> | Driver Product Name Pulse Input Type with RS-485 Communication |                              |                                                                              | ZD-AX(Single-Phase                                                             | 100-120 VAC), AZD             | -CX(Single-Phase/Th          | ree-Phase 200-240 VA           | AC)                           |  |
|                            | Pulse Input Type                                               |                              | AZD-A(Single-Phase 100-120 VAC), AZD-C(Single-Phase/Three-Phase 200-240 VAC) |                                                                                |                               |                              |                                |                               |  |
| Maximum Holding            | Torque                                                         | N·m (lb-in)                  | 3.5 (30)                                                                     | 5 (44)                                                                         | 7 (61)                        | 10 (88)                      | 33 (292)                       | 52 (460)                      |  |
| Rotor Inertia              |                                                                | J: kg·m² (oz-in²)            | 72×10 <sup>-7</sup> (0.39) [8                                                | 8×10 <sup>-7</sup> (0.48)]*1                                                   | 405×10 <sup>-7</sup> (2.2) [5 | 65×10 <sup>-7</sup> (3.1)]*1 | 1290×10 <sup>-7</sup> (7.1) [1 | 450×10 <sup>-7</sup> (7.9)]*1 |  |
| Gear Ratio                 |                                                                |                              | 50                                                                           | 100                                                                            | 50                            | 100                          | 50                             | 100                           |  |
| Resolution                 |                                                                | Resolution Setting: 1000 P/R | 0.0072°/Pulse                                                                | 0.0036°/Pulse                                                                  | 0.0072°/Pulse                 | 0.0036°/Pulse                | 0.0072°/Pulse                  | 0.0036°/Pulse                 |  |
| Permissible Torque         | Permissible Torque N·m (lb-in                                  |                              |                                                                              | 5 (44)                                                                         | 7 (61)                        | 10 (88)                      | 33 (290)                       | 52 (460)                      |  |
| Maximum Instantar          | neous Torque*                                                  | N·m (lb-in)                  | 8.3 (73)                                                                     | 11 (97)                                                                        | 23 (200)                      | 36 (310)                     | *                              | 107 (940)                     |  |
| Holding Torque at          | Power On                                                       | N·m (lb-in)                  | 3.5 (30)                                                                     | 5 (44)                                                                         | 7 (61)                        | 10 (88)                      | 33 (290)                       | 52 (460)                      |  |
| Motor Standstill           | Electromagnetic Brak                                           | ke N·m (lb-in)               | 3.5 (30)                                                                     | 5 (44)                                                                         | 7 (61)                        | 10 (88)                      | 33 (290)                       | 52 (460)                      |  |
| Speed Range                |                                                                | r/min                        | 0 - 70                                                                       | 0 - 35                                                                         | 0 - 70                        | 0 - 35                       | 0 - 70                         | 0 - 35                        |  |
| Lost Motion                |                                                                | arcmin                       | 1.5 max.                                                                     | 1.5 max.                                                                       | 0.7 max.                      | 0.7 max.                     | 0.7 r                          | nax.                          |  |
| (Load Torque)              |                                                                | dicilliii                    | (±0.16 N⋅m)                                                                  | (±0.20 N⋅m)                                                                    | (±0.28 N⋅m)                   | (±0.39 N⋅m)                  | (±1.2                          | N·m)                          |  |
|                            | Voltage and Frequen                                            | су                           | S                                                                            | ingle-Phase 100-120                                                            | VAC, Single-Phase/Thre        | ee-Phase 200-240 VA          | C -15 to+6% 50/60 H            | Z                             |  |
| Power Supply               | 1101                                                           | Single-Phase 100-120 VAC     | 2.                                                                           | 7                                                                              | 3.                            | 8                            | 5.5                            |                               |  |
| Input                      | Input Current —<br>A —                                         | Single-Phase 200-240 VAC     | 1.                                                                           | 7                                                                              | 2.3                           |                              | 3.3                            |                               |  |
|                            |                                                                | Three-Phase 200-240 VAC      | 1.                                                                           | .0                                                                             | 1.4                           |                              | 2.0                            |                               |  |
| Control Power Supp         | oly                                                            |                              | 24 VDC ±5%*2 0                                                               | .25 A [0.33 A]*1                                                               | 24 VDC ±5%*2 0.25 A [0.5A]*1  |                              |                                |                               |  |
|                            |                                                                |                              |                                                                              |                                                                                | <u> </u>                      |                              |                                |                               |  |

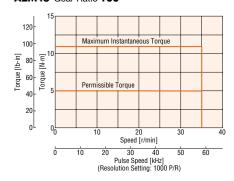
<sup>\*</sup>For the geared motor output torque, refer to the speed - torque characteristics.


#### Note

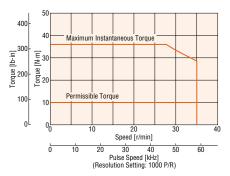
# Speed - Torque Characteristics (Reference Values)


#### AZM46 Gear Ratio 50

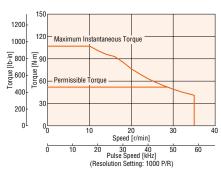



#### AZM66 Gear Ratio 50




AZM98 Gear Ratio 50




## AZM46 Gear Ratio 100



#### AZM66 Gear Ratio 100



#### AZM98 Gear Ratio 100



#### Note

- Data for the speed torque characteristics is based on Oriental Motor's internal measurement conditions. If the conditions are changed, the characteristics may also change as a result.
- Depending on the driving conditions, a considerable amount of heat may be generated by the motor. To protect the absolute sensor, be sure to keep the motor case temperature at 80°C (176°F) max. (When conforming to the UL Standards, the temperature of the motor case must be kept at 75°C (167°F) max., since the motor is recognized as heat-resistant class A.)

<sup>•</sup> For detailed information about standards, please see the Oriental Motor website.

<sup>\*1</sup> The bracket [ ] indicates the value for the product with an electromagnetic brake.

<sup>\$2</sup> For the type with an electromagnetic brake, 24 VDC±4% specification applies if the wiring distance between the motor and driver is extended to 20 m (65.6 ft.) using a cable.

<sup>•</sup> The rotor inertia represents a sum of the inertia of the harmonic gear converted to motor shaft values.

# Hybrid Control System *α*≤*τε*

# Driver Specifications

| Driver Type                                                                                                        |                          |                                |                                                       | Built-in Controller Type                                                                                                                                                                            | Pulse Input Type<br>with RS-485 Communication | Pulse Input Type  AZD-A  AZD-C |  |  |
|--------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------|--|--|
| Driver Produc                                                                                                      | t Name                   |                                |                                                       | AZD-AD<br>AZD-CD                                                                                                                                                                                    | AZD-AX<br>AZD-CX                              |                                |  |  |
| Max. Input Pulse Frequency                                                                                         |                          |                                | _                                                     | Line driver output by programmable controller: 1 MHz (When the pulse duty is 50%) Open-collector output by programmable controller: 250 kHz (When the pulse duty is 50%) Negative Logic Pulse Input |                                               |                                |  |  |
| I/O Function                                                                                                       |                          |                                | Positioning Data Points                               | 256 Points                                                                                                                                                                                          | 256 Points*1                                  |                                |  |  |
|                                                                                                                    |                          |                                | Direct Input                                          | 10 Points                                                                                                                                                                                           | 6 Points                                      |                                |  |  |
|                                                                                                                    |                          |                                | Direct Output                                         | 6 Points                                                                                                                                                                                            |                                               |                                |  |  |
|                                                                                                                    |                          |                                | RS-485 Communication Remote Input                     |                                                                                                                                                                                                     | _                                             |                                |  |  |
|                                                                                                                    |                          |                                | RS-485 Communication Remote Output                    |                                                                                                                                                                                                     | 16 Points                                     | _                              |  |  |
| Setting Tool                                                                                                       |                          |                                | Support Software MEXEO2                               |                                                                                                                                                                                                     | 0                                             |                                |  |  |
| Position Coord                                                                                                     | dinate Manageme          | nt Method                      |                                                       |                                                                                                                                                                                                     | Battery-Free Absolute System                  |                                |  |  |
|                                                                                                                    |                          | Operation                      | Positioning Operation                                 | 0                                                                                                                                                                                                   | 0                                             | ○*1                            |  |  |
|                                                                                                                    |                          | Method                         | Positioning Push-Motion Operation*2                   | 0                                                                                                                                                                                                   | 0                                             | ○*1                            |  |  |
|                                                                                                                    |                          | Linked Mode                    | Single-Motion Operation                               | 0                                                                                                                                                                                                   | 0                                             | ○*1                            |  |  |
|                                                                                                                    | Positioning              |                                | Sequential Operation                                  | 0                                                                                                                                                                                                   | 0                                             | ○*1                            |  |  |
|                                                                                                                    | Operation                |                                | Multi-Speed Operation<br>(Continuous Form Connection) | 0                                                                                                                                                                                                   | 0                                             | <b>○*</b> ¹                    |  |  |
|                                                                                                                    |                          | Sequence                       | Loop Operation (Repetitive)                           | 0                                                                                                                                                                                                   | 0                                             | ○*1                            |  |  |
| Operation                                                                                                          |                          | Control                        | Event Jump Operation                                  | 0                                                                                                                                                                                                   | 0                                             | ○*1                            |  |  |
|                                                                                                                    |                          | Position Control               |                                                       | 0                                                                                                                                                                                                   | 0                                             | ○*1                            |  |  |
|                                                                                                                    | Continuous               | Speed Control                  |                                                       | 0                                                                                                                                                                                                   | 0                                             | ○*1                            |  |  |
|                                                                                                                    | Operation                | Torque Control                 |                                                       | 0                                                                                                                                                                                                   | 0                                             | <b>○*</b> 1                    |  |  |
|                                                                                                                    |                          | Push-Motion*2                  |                                                       | 0                                                                                                                                                                                                   | 0                                             | ○*1                            |  |  |
|                                                                                                                    | Return-to-Home Operation |                                | Return-to-Home Operation                              | 0                                                                                                                                                                                                   | 0                                             | 0                              |  |  |
|                                                                                                                    |                          |                                | High-Speed Return-to-Home Operation                   | 0                                                                                                                                                                                                   | 0                                             | 0                              |  |  |
|                                                                                                                    | JOG Operation            |                                |                                                       | 0                                                                                                                                                                                                   | 0                                             | 0                              |  |  |
|                                                                                                                    |                          |                                | Waveform Monitor                                      | 0                                                                                                                                                                                                   | 0                                             | 0                              |  |  |
| Overload Detection Overheat Detection (Motor and Driver)                                                           |                          |                                | 0                                                     | 0                                                                                                                                                                                                   | 0                                             |                                |  |  |
|                                                                                                                    |                          |                                | Overheat Detection (Motor and Driver)                 | 0                                                                                                                                                                                                   | 0                                             | 0                              |  |  |
| Monitoring/Information Position and                                                                                |                          | Position and Speed Information | 0                                                     | 0                                                                                                                                                                                                   | 0                                             |                                |  |  |
| Temperature Detection (Motor and Driver)  Motor Load Factor  Travel Distance and Integrated Travel Distance  Alarm |                          |                                | Temperature Detection (Motor and Driver)              | 0                                                                                                                                                                                                   | 0                                             | 0                              |  |  |
|                                                                                                                    |                          |                                | Motor Load Factor                                     | 0                                                                                                                                                                                                   | 0                                             | 0                              |  |  |
|                                                                                                                    |                          |                                | Travel Distance and Integrated Travel Distance        | 0                                                                                                                                                                                                   | 0                                             | 0                              |  |  |
|                                                                                                                    |                          |                                | -                                                     | 0                                                                                                                                                                                                   | 0                                             | 0                              |  |  |

<sup>\*1</sup> This can be used by setting with the support software **MEXEO2**.

# RS-485 Communication Specification

| Protocol                   | Modbus RTU Mode                                                                                                                                                                                  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electrical Characteristics | EIA-485 Based, Straight Cable Use a shielded twisted pair cable (TIA/EIA-568B CAT5e or higher is recommended) and keep the total wiring distance including extension to 50 m (164 ft.) or less.* |
| Communication Mode         | Half duplex, asynchronous communication (data: 8 bits, stop bit: 1 bit or 2 bits, parity: none, even, or odd)                                                                                    |
| Transmission Rate          | Select either from 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115200 bps, or 230400 bps.                                                                                                         |
| Connection Units           | Up to 31 drivers can be connected to a single programmable controller (master device).                                                                                                           |

<sup>\*</sup>If the motor cable or power supply cable generates an undesirable amount of noise depending on the wiring or configuration, shield the cable or install a ferrite core.

Overview

*QsтеР* Absolute

Linear Slides OSTEP EZS

Cylinders

CYSTEP

EAC

Cylinders *XsтеР* DRS2

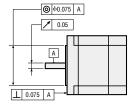
Rotary Actuators *OSTEP* **DGII** 

*O*STEP **AR** 

<sup>\$2\$</sup> The push-motion operation cannot be performed with geared motors or rotary actuators  $\textbf{DG} \hspace{.1cm} \blacksquare$  Series.

# **■**General Specifications

AC Input


DC Input

EtherCAT Multi-Axis Driver

|                                                       |                          |                                                                                                                                                              | Driver                                                                                                                                                                                                                                    |                     |  |  |  |
|-------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|
|                                                       |                          | Motor                                                                                                                                                        | Built-in Controller Type Pulse Input Type with RS-485 Communication                                                                                                                                                                       | Pulse Input<br>Type |  |  |  |
| Thermal Class                                         |                          | 130 (B)<br>[UL Recognized 105 (A) ]                                                                                                                          | -                                                                                                                                                                                                                                         |                     |  |  |  |
| Insulation Resistance                                 |                          | 100 $\rm M\Omega$ or more when 500 VDC megger is applied between the following places:<br>-Case – Motor windings<br>-Case – Electromagnetic Brake Windings*1 | 100 M $\Omega$ or more when 500 VDC megger is applied between the following places:<br>•PE Terminal – Power Supply Terminal<br>•Encoder Connector – Power Supply Terminal<br>•I/O Signal Terminal – Power Supply Terminal                 |                     |  |  |  |
| Dielectric Strength                                   |                          | Sufficient to withstand the following for 1 minute:  • Case – Motor Winding 1.5 kVAC 50/60 Hz  • Case – Electromagnetic Brake Windings*1 1.5 kVAC 50/60 Hz   | Sufficient to withstand the following for 1 minute:  •PE Terminal – Power Supply Terminal 1.5 kVAC 50/60 Hz  •Encoder Connector – Power Supply Terminal 1.8 kVAC 50/60 Hz  •I/O Signal Terminal – Power Supply Terminal 1.8 kVAC 50/60 Hz |                     |  |  |  |
|                                                       | Ambient Temperature      | 0 to +40°C (+32 to +104°F) (Non-Freezing)*2                                                                                                                  | 0 to +55°C (+32 to +131°F) (Non-Freezing)                                                                                                                                                                                                 | <b>*</b> 3          |  |  |  |
| Operating Environment                                 | Ambient Humidity         | 85% or le                                                                                                                                                    | ess (Non-Condensing)                                                                                                                                                                                                                      |                     |  |  |  |
|                                                       | Surrounding Atmosphere   | No corrosive ç                                                                                                                                               | gas or dust. No water or oil.                                                                                                                                                                                                             |                     |  |  |  |
| Degree of Protection                                  |                          | IP66 (excluding the mounting surface and connectors)                                                                                                         | IP10                                                                                                                                                                                                                                      | IP20                |  |  |  |
| Stop Position Accuracy                                |                          | <b>AZM46</b> , <b>AZM48</b> : ±4 arcmin (±0.067°) <b>AZ</b>                                                                                                  | 067°) <b>AZM66</b> , <b>AZM69</b> , <b>AZM98</b> , <b>AZM911</b> : ±3 arcmin (±0.05°)                                                                                                                                                     |                     |  |  |  |
| Shaft Runout                                          |                          | 0.05 mm (0.002 in.) T.I.R.*4                                                                                                                                 | _                                                                                                                                                                                                                                         |                     |  |  |  |
| Concentricity of Installing                           | g Pilot to the Shaft     | 0.075 mm (0.003 in.) T.I.R.*4                                                                                                                                | =                                                                                                                                                                                                                                         |                     |  |  |  |
| Perpendicularity of Installation Surface to the Shaft |                          | 0.075 mm (0.003 in.) T.I.R.*4                                                                                                                                | _                                                                                                                                                                                                                                         |                     |  |  |  |
| Multiple Rotation Detecti                             | ion Range Upon Power OFF | ±900 Revolutions (1,800 Revolutions)                                                                                                                         |                                                                                                                                                                                                                                           |                     |  |  |  |

<sup>\*1</sup> Electromagnetic brake type only.

#### Note



# Electromagnetic Brake Specification

| Product Name            | AZM46                    | AZM66 | AZM69 | AZM98 |      |  |
|-------------------------|--------------------------|-------|-------|-------|------|--|
| Brake Type              | Power Off Activated Type |       |       |       |      |  |
| Power Supply Voltage    | 24 VDC±5%*               |       |       |       |      |  |
| Power Supply Current A  |                          | 0.08  | 0.25  | 0.25  | 0.25 |  |
| Brake Operating Time ms |                          | 20    |       |       |      |  |
| Brake Releasing Time ms |                          | 30    |       |       |      |  |
| Time Rating             | Continuous               |       |       |       |      |  |

<sup>\*</sup>For the type with an electromagnetic brake, 24 VDC±4% specification applies if the wiring distance between the motor and driver is extended to 20 m (65.6 ft.) using a cable.

#### Permissible Moment Load

→ Page B-11

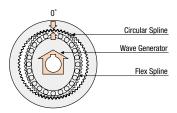
## Permissible Radial Load and Permissible Axial Load

→ Page B-12

#### Rotation Direction

→ Page B-13

<sup>\*2</sup> Based on Oriental Motor's measurement conditions.


<sup>\*3</sup> When a heat sink of a capacity at least equivalent to an aluminum plate with a size of 200×200 mm (7.87×7.87 in.), 2 mm (0.08 in.) thick is installed.

<sup>\*4</sup> T. I. R. (Total Indicator Reading): The total dial gauge reading when the measurement section is rotated once around the reference axis center.

Disconnect the motor and driver when taking an insulation resistance measurement or performing a dielectric voltage withstand test.
 Also, do not perform these tests on the absolute sensor part of the motor.

<sup>•</sup> The product names are listed such that the applicable product names can be determined.

#### Principle and Structure



#### Details of the Accuracy

Unlike the conventional spur gear gearhead, the harmonic gear has no backlash. The harmonic gear has many teeth in simultaneous meshing engagement, and is designed to average out the effects of tooth pitch error and cumulative pitch error on rotation accuracy to ensure high positioning accuracy.

Also, harmonic gears have high gear ratios, so torsion when the load torque is applied to the output shaft is much smaller than a single motor and other geared motor. Rigidity is high and less subject to load fluctuation and enables stable positioning. When the high positioning accuracy and rigidity are required, refer to the following characteristics.

#### ♦ Angular Transmission Accuracy

Angular transmission error is the difference between the theoretical rotation angle of the output shaft, as calculated from the input pulse count, and actual rotation angle. It is represented as the difference between the min. and max. error value in the set of measurements taken for a single rotation of the output shaft starting from an arbitrary position.

| Product Name | Angular Transmission Accuracy [arcmin] |  |  |  |
|--------------|----------------------------------------|--|--|--|
| AZM24-HS     | 2 (0.034°)                             |  |  |  |
| AZM46-HS□    | 1.5 (0.025°)                           |  |  |  |
| AZM66-HS□    | 1.5 (0.025 )                           |  |  |  |
| AZM98-HS□    | 1 (0.017°)                             |  |  |  |

Values in no-load condition (reference of gear part)

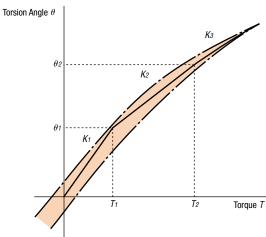
# 

In actual applications, there is always frictional load, and displacement is produced as a result of this load. If the frictional load is constant, the displacement will be constant for unidirectional operation. However, in bidirectional operation, double the displacement is produced over a round trip. This displacement can be estimated from the following torque - torsion characteristics. This displacement occurs when an external force is applied as the gear is stopped, or when the gear is driven under a frictional load. The slope can be approximated with the spring constant in the following 3 classes, depending on the size of the load torque, and can be estimated through calculation.

Hybrid Control System *Q*<sub>STEP</sub>

1. Load torque  $T_L$  is  $T_I$  max.

$$\theta = \frac{T_L}{K_I}$$
 [min


 $heta=rac{T_L}{K_I} ext{ [min]}$  2. Load torque  $T_L$  exceeds  $T_I$  and is  $T_2$  max.

$$\theta = \theta {\it 1} + \frac{T{\it L} - T{\it 1}}{K{\it 2}} \; [{\rm min}]$$

3. Load torque  $T_L$  exceeds  $T_2$ 

$$heta = heta_2 + rac{T_L - T_2}{K_3} \; ext{[min]}$$

The torsion angle of the harmonic gear alone is calculated according to the size of the load torque.



Torsion Angle - Torque Characteristics

Values for Determining Torsion Angle

|              |            |           | U             |           |           |               |           |               |
|--------------|------------|-----------|---------------|-----------|-----------|---------------|-----------|---------------|
| Product Name | Gear Ratio | T1<br>N·m | K1<br>N·m/min | θ1<br>min | T2<br>N·m | K2<br>N·m/min | θ2<br>min | K3<br>N·m/min |
| AZM24-HS50   | 50         | 0.29      | 0.08          | 3.7       | _         | 0.12          | _         | _             |
| AZM24-HS100  | 100        | 0.29      | 0.1           | 2.9       | 1.5       | 0.15          | 11        | 0.21          |
| AZM46-HS50   | 50         | 0.8       | 0.64          | 1.25      | 2         | 0.87          | 2.6       | 0.93          |
| AZM46-HS100  | 100        | 0.8       | 0.79          | 1.02      | 2         | 0.99          | 2.2       | 1.28          |
| AZM66-HS50   | 50         | 2         | 0.99          | 2         | 6.9       | 1.37          | 5.6       | 1.66          |
| AZM66-HS100  | 100        | 2         | 1.37          | 1.46      | 6.9       | 1.77          | 4.2       | 2.1           |
| AZM98-HS50   | 50         | 7         | 3.8           | 1.85      | 25        | 5.2           | 5.3       | 6.7           |
| AZM98-HS100  | 100        | 7         | 4.7           | 1.5       | 25        | 7.3           | 4         | 8.4           |

Overview

Linear Slides

CSTEF

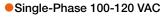
Cylinders **Χ**STEF DRS2

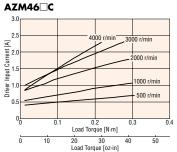
Rotary Actuators *OLSTEP* **DGII** 

**USTEP** AR

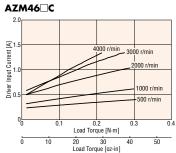
# ■Load Torque - Driver Input Current **Characteristics**

This is the relationship between the load torque and driver input current at each speed when the motor is actually operated. Due to these characteristics, it is possible to estimate the power supply capacity required to use the multi-axis. For geared types, use the speed and torque at the motor shaft.

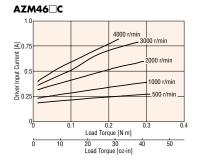

Motor Shaft Speed [r/min] = Gear Output Shaft Speed × Gear Ratio Gear Output Shaft Torque Motor Shaft Torque [N·m (oz-in)] = Gear Ratio


AC Input

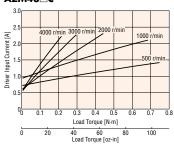
DC


# Input

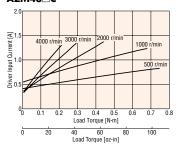
#### **EtherCAT** Multi-Axis Driver



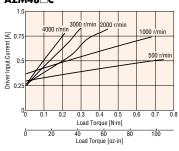




# Single-Phase 200-240 VAC

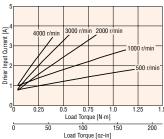



#### Three-Phase 200-240 VAC

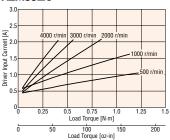




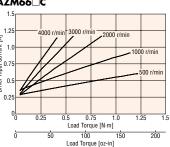




#### AZM48□C

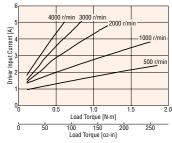



#### AZM48□C

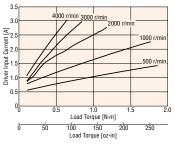



#### AZM66□C

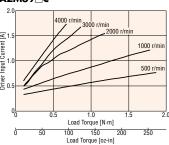



#### AZM66□C



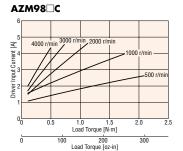

AZM66□C



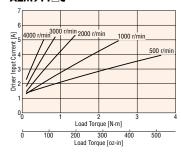

#### AZM69□C



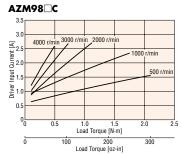
AZM69□C



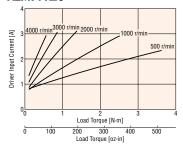

AZM69□C




# Hybrid Control System **QSTEP** B-43

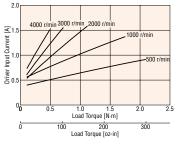

# Single-Phase 100-120 VAC



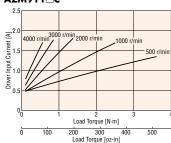

#### AZM911□C



## Single-Phase 200-240 VAC




#### AZM911□C




#### ●Three-Phase 200-240 VAC

## AZM98□C



#### AZM911□C



Overview

*О*СSTEP Absolute **AZ** 

Linear Slides ØSTEP EZS

Cylinders *О*С*STEP* **EAC** 

Cylinders *Q*стер DRS2

Rotary Actuators *OSTEP* DGII

*O*STEP AR

Hybrid Control System *Q*STEP Battery-Free, Built-in Absolute Sensor

# AZ Series DC Power Supply Input

AC Input

DO

EtherCAT Multi-Axis Driver For detailed information about regulations and standards, please refer to the Oriental



By incorporating the newly developed absolute sensor, an absolute system is now possible without a battery. The driver is a highly functional, compact DC power supply input type. Advanced positioning is possible at affordable prices.

- Equipped with the newly developed absolute sensor
- External sensors not required
- Shortens the return-to-home time
- Battery not required
- Energy savings and low heat generation
- Select from 3 different drivers based on the system configuration
- Achieve easy operation with the support software MEXEO2



See Full Product Details Online www.orientalmotor.com

- Manual
- Specifications
- Dimensions

- CAD
- Characteristics
- Connection and Operation

#### Features

# **Advanced Technology at Affordable Prices**

Oriental Motor has developed and patented a compact, low-cost, battery-free mechanical type absolute sensor.

The **AZ** Series can contribute to improved productivity and cost reductions, and is available at affordable prices.

List Price starting from \$702.00
 [Total price of motors, drivers and cables (1 m (3.3 ft.))]



# **Newly Developed Absolute Sensor**

#### Mechanical-Type Sensor

A mechanical sensor composed of multiple gears is employed. Positioning information is detected by recognizing the angle of the individual gears. As a result, it does not require a battery.

#### Multiple-Rotation Absolute System

Absolute position detection is possible with  $\pm 900$  rotations (1800 rotations) of the motor shaft from the home position.  $\pm \pm 450$  rotations (900 rotations) for products of with 20 mm or 28 mm frame sizes.

#### Home Setting Method

The home position can be easily set by pressing a switch on the driver, which is saved by the absolute system. In addition, home setting is possible with the support software **MEXEO2** or by using an external input signal.



HOME PRESET Switch

# Hybrid Control System **QSTEP** B-45

## No External Sensors Required

With the use of the absolute system, external sensors such as the home sensor and the limit sensor are not needed.

#### Reduced Cost

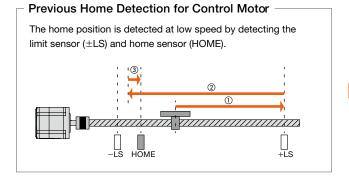
Sensor costs and wiring costs can be reduced, allowing for lower system costs.

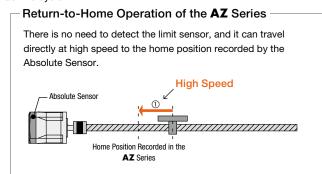
#### Simple Wiring

Wiring is simplified, and the degree of freedom for equipment design is increased.

#### Not Affected by Sensor Malfunctions

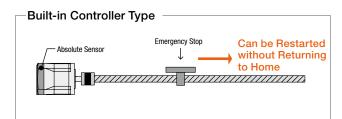
There is no concern about sensor malfunctions (when operating in environments filled with oil mist or filled with metal pieces due to metal processing), sensor failures or sensor wire disconnections.


#### Improved Return-to-Home Accuracy


Home position accuracy is increased because the return-to-home operation is performed regardless of any variations in home sensor sensitivity.

If no limit sensor is installed, movements that exceed the limit values can be avoided through the use of the limits in the driver software.

# Shortened Reset Time (1) High Speed Return-to-Home


Because return-to-home is possible without using an external sensor, return-to-home can be performed at high speed without taking the specifications for sensor sensitivity into account, allowing for a shortened machine cycle.





# Shortened Reset Time (2) Return-to-Home is Not Necessary

Even if the power shuts down during a positioning operation, the positioning information is retained. Furthermore, for built-in controller types, positioning operations can restart without performing a return-to-home operation when recovering from an emergency stop of the production line or a blackout.



Overview

Linear Slides

CSTEF

Cylinders

Cylinders ЙSTEP DR\$2

Rotary Actuators *OCSTEP* **DGII** 

**USTEP** AR

## No Battery Required

No battery is required thanks to a mechanical-type sensor. Because positioning information is managed mechanically by the Absolute Sensor, the positioning information can be preserved, even if the power turns off, or if the cable between the motor and the driver is disconnected.

Input

DC

EtherCAT Multi-Axis Driver



Because there is no battery that needs replacing, maintenance time and costs can be reduced.

#### Unlimited Driver Installation Possibilities

Because there is no need to secure space for battery replacement, there are no restrictions on the installation location of the driver, improving the flexibility and freedom of the layout design of the control box.



#### Safe for Overseas Shipping

Normal batteries will self-discharge, so care must be taken when the equipment requires a long shipping time, such as when being sent overseas. The Absolute Sensor does not require a battery, so there is no limit as to how long the positioning information is maintained. In addition, there is no need to worry about various safety regulations, which must be taken into consideration when shipping a battery overseas.

#### Position Holding Even when the Cable between the Motor and Driver is Detached

Positioning information is stored within the Absolute Sensor.

Because the positioning information is stored in the Absolute Sensor, the home position must be reset if the motor is replaced.

## **High Reliability**

High reliability is provided by using a hybrid control method unique to Oriental Motor that combines the merits of both open loop control and closed loop control.

#### Continues Operation Even with Sudden Load Fluctuation and Sudden Acceleration

In normal conditions, it operates synchronously with pulse commands under open loop control, and because of its compact size and high torque generation, it has excellent acceleration performance and responsiveness. In an overload condition, it switches immediately to closed loop control to correct the position.

#### Alarm Signal Output in Case of Abnormality

If a continuous overload is applied, an alarm signal is output. Also, when the positioning is completed, a signal is output. This provides high reliability.

#### No Tuning Required

Because it is normally operated with open loop control, positioning is still possible without gain tuning even when the load fluctuates due to the use of a belt mechanism, cam or chain drive, etc.

#### Holding the Stop Position

During positioning, the motor stops with its own holding force without hunting. Because of this, it is ideal for applications where the low rigidity of the mechanism requires absence of vibration upon stopping.

#### Smooth Operation Even at Low Speed

Thanks to the standard microstep drive and smooth drive function\*, vibration is reduced even at low speed and the motor can move objects smoothly.

\*The smooth drive function automatically microsteps based on the same traveling amount and speed used in the full step mode, without changing the pulse input settings.

## **Energy Savings**

Energy savings are realized with a high efficiency motor.

#### 43% Less Power Consumption\* than Conventional Oriental Motor Products Due to Energy-Saving Features

Conventional Product

# Power Consumption 500 Figure 400 Fower Consumption Reduced by 43% 100 100 Reduced by

AZM66AK

#### \*Operating Condition

- · Speed: 1000 r/min, load factor: 50%
- Operating Time: 24 hours of operation, 365 days/year (70% operating, 25% stand-by, 5% off)
- · Power Supply Voltage: 24 VDC

# 3 Driver Types Available Depending on the System Configuration

3 Types of AZ Series drivers are available, depending on the master control system in use.

#### 

With this type, the operating data is set in the driver, which can then be selected and executed from the host system. Host system connection and control are performed with I/O, Modbus (RTU)/RS-485 or FA network. By using a network converter (sold separately), EtherCAT, CC-link or MECHATROLINK communication is possible.

#### Basic Setting (Factory Setting)





#### Setting Operating Data and Changing Parameters Support Software MEXEO2



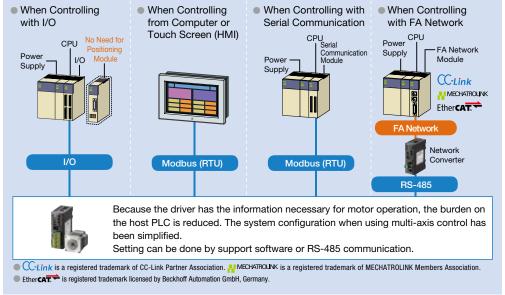
Setting using RS-485 communication is also possible.

Overview

Linear Slides **CASTER** 

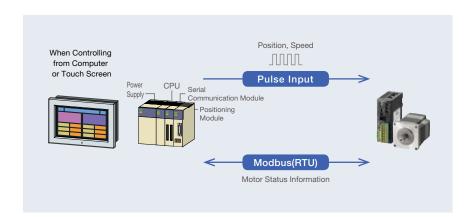
Cylinders

Cylinders ЙSTEP DR\$2


Rotary Actuators

OUSTEP

DGII


**USTEP** AR





#### Pulse Input Type with RS-485 Communication

This type executes operations by inputting pulses into the driver. Control the motor using a positioning module (pulse generator) that you have obtained yourself. Motor status information (position, speed, torque, alarm, temperature, etc.) can be checked by using RS-485 communication.



#### Basic Setting (Factory setting)





Motor or Actuator Equipped with **AZ** Series

Drive

I/O Assignment Parameter Changing Changing Support Software (MEXEO2)



The support software (MEXEO2) can be used to check the alarm history and monitor status information.

Input

DC Input

EtherCAT Multi-Axis

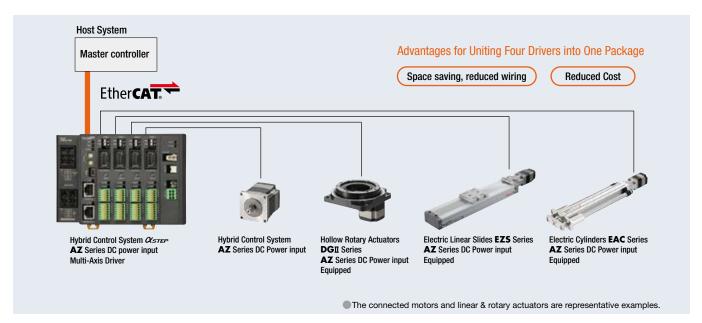
Driver

#### Pulse Input Type

This type executes operations by inputting pulses into the driver. It controls the motor using a positioning module (pulse generator).



I/O Assignment Parameter
Changing Changing
Support Software (MEXE02)




The support software (**MEXEO2**) can be used to check the alarm history and monitor status information.



#### EtherCAT Compatible Multi-Axis Driver

This multi-axis driver supports EtherCAT driver profiles. It allows you to connect **AZ** Series DC input motors as well as linear & rotary actuators equipped with these motors. Drivers that can connect to 2, 3 or 4 axes are available.



- Ether CAT: is registered trademark licensed by Beckhoff Automation GmbH, Germany.
- The support software **MEXEO2** can be downloaded from the Oriental Motor website. Oriental Motor can also provide media (free).

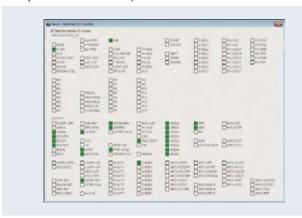
# Hybrid Control System *OLITHA* B-49

# Easy Operation through the Use of the Support Software **MEXEO2**

#### Test Function

This function enables you to operate a motor alone or check the connection to the host system. Using this function when starting up the equipment can reduce the overall startup time.

#### 


Support software can be used to easily perform the home setting and also drive the motor. Teaching, test operations, and more can be performed before connecting to the host system, contributing to shorter equipment startup time.



#### ⟨I/O Test

On startup For operation

Monitoring input signals and forced output of output signals can be performed. These are convenient functions for confirming wiring with the host system and network I/O operation.

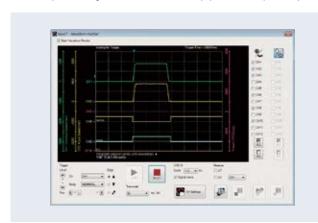


Overview

٩Z

Linear Slides *X*STEP EZS

Cylinders


Cylinders ЙSTEP DR\$2

Rotary Actuators *OCSTEP* **DGII** 

*OLSTEP* AR

#### Various Monitoring Functions

The operating status of the motor and output signals can be checked by an oscilloscope-like image. This can be used for equipment start-up and adjustment.



#### 

When an abnormality occurs, the details of the abnormality, the operating status at the time of the occurrence, and the solution can be checked.



#### 

Speed, motor, driver temperature, and load factor during operations, the integrating rotation amount, etc. can be monitored from the start of use. The signal for each item can be output at your discretion, which leads to efficient maintenance.



- ①Detects the actual position in comparison to the command position.
- ②Detects the actual speed in comparison to the command speed.
- 3 Detects the temperature of the motor encoder section and inside the driver.
- 4With the output torque of the motor speed at 100%, the current load factor can be displayed.

#### 

Multiple setting screens, such as the data setting, test operation, and monitor screens, can be simultaneously opened and used. This enables smooth equipment startup, adjustment, and more.



# Product Line of Motors

## Types and Features of Standard and Geared Motors

AC Input

> DC Input

EtherCAT Multi-Axis Driver

|               | Туре                                         | Features                                                                                                                                                                   | Backlash<br>[arcmin]                                                         | Basic Resolution<br>[deg/step] | Output Shaft Speed<br>[r/min] |      |
|---------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------|-------------------------------|------|
| Standard Type |                                              | · Basic motor of the AZ Series                                                                                                                                             | Maximum Holding<br>Torque<br>2 (17.7)                                        | _                              | 0.36                          | 6000 |
| klash         | TS Geared Type<br>(Spur Gear Mechanism)      | · A wide variety of low gear ratios,<br>high-speed operations<br>· Gear ratio: 3.6, 7.2, 10, 20, 30                                                                        | Permissible Torque / Max. Instantaneous Torque 6 (53) 10 (88)                | 10 (0.17°)                     | 0.012                         | 833  |
| Low backlash  | PS Geared Type<br>(Planetary Gear Mechanism) | High permissible/ max. instantaneous torque     A wide variety of gear ratios for selecting the desired step angle     Center shaft     Gear ratio: 5, 7.2, 10, 25, 36, 50 | Permissible Torque  \[ \] Max. Instantaneous Torque  8 (70) 20 (177)         | 7 (0.12°)                      | 0.0072                        | 600  |
| klash         | HPG Geared Type (Harmonic planetary)         | High positioning accuracy     High permissible/     max. instantaneous torque     Center shaft     Gear ratio: 5, 9, 15                                                    | Permissible Torque Max. Instantaneous Torque 9 (79) 23 (200)                 | 3 (0.05°)                      | 0.024                         | 800  |
| Non-backlash  | Harmonic Geared Type (Harmonic drive)        | High positioning accuracy     High permissible/     max. instantaneous torque     High gear ratio, high resolution     Center shaft     Gear ratio: 50, 100                | Permissible Torque \( \mathbb{Max. Instantaneous Torque} \) 10 (88) 36 (310) | 0                              | 0.0036                        | 70   |

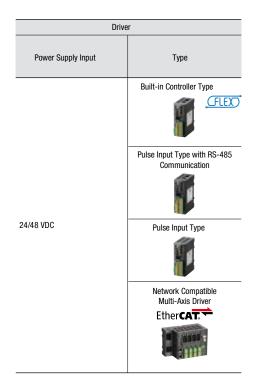
#### Note

Please use the above values as reference to see the differences between each type. These values vary depending on the motor frame size and gear ratio.

Harmonic Planetary, Harmonic Drive and are registered trademarks of Harmonic Drive Systems Inc.

Oriental Motor offers pre-assembled geared motors.

Based on torque, accuracy (backlash) and list price, the optimal type can be selected from the various geared motors.




List Price

## Hybrid Control System *QSTEP* B-51

#### Motor and Driver Product Line

|                       |                          | Motor               |                     |                       |                     |
|-----------------------|--------------------------|---------------------|---------------------|-----------------------|---------------------|
|                       | Flootromognotio          |                     | Frame Size          |                       |                     |
| Туре                  | Electromagnetic<br>Brake | 20 mm<br>(0.79 in.) | 28 mm<br>(1.10 in.) | 42 mm*2<br>(1.65 in.) | 60 mm<br>(2.36 in.) |
| Standard Type         | Not Equipped             | <b>●</b> *1         | ●* <sup>1</sup>     | •                     | •                   |
|                       | Equipped                 | _                   | _                   | <b>●*</b> 3           | •                   |
| TS Geared Type        | Not Equipped             | _                   | _                   | •                     | •                   |
| 13 dealed Type        | Equipped                 | -                   | _                   | •                     | •                   |
| PS Geared Type        | Not Equipped             | _                   | _                   | •                     | •                   |
| P3 dealed Type        | Equipped                 | -                   | _                   | •                     | •                   |
| HPG Geared Type       | Not Equipped             | -                   | _                   | •                     | •                   |
| nro dealed type       | Equipped                 | _                   | _                   | •                     | •                   |
| Harmonic Geared Type  | Not Equipped             | _                   | _                   | •                     | •                   |
| Tarrionic deared Type | Equipped                 | -                   | _                   | •                     | •                   |



Overview

*QsтeP* Absolute **AZ** 

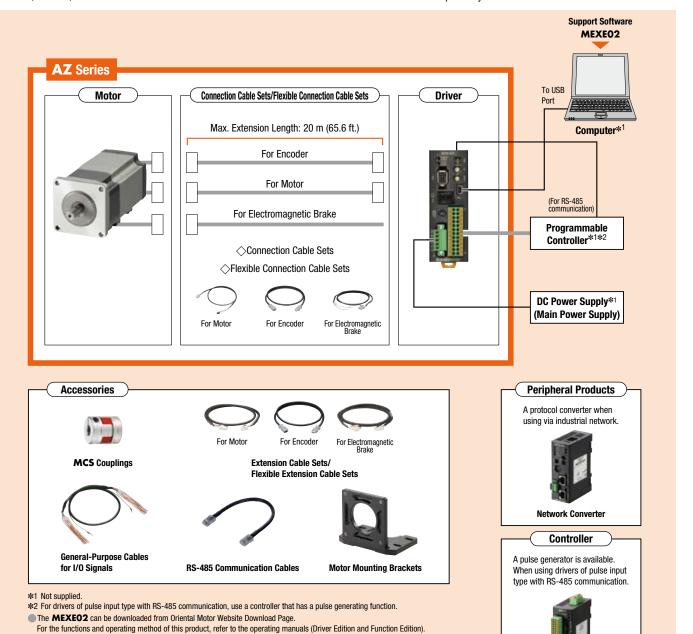
Linear Slides ØSTEP EZS

Cylinders *OLSTEP* **EAC** 

Cylinders *QsтеР* **DRS2** 

Rotary Actuators *OCSTEP* DGII

*O*STEP AR


### System Configuration

 Combination of Standard Type Motor with an Electromagnetic Brake and Built-in Controller Type Driver or the Pulse Input Type Driver with RS-485 Communication

AC Input A configuration example of I/O control with a built-in controller type driver or using RS-485 communication is shown below. Motors, drivers, and a connection cable set/flexible connection cable set need to be ordered separately.

DC Input

EtherCAT Multi-Axis Driver



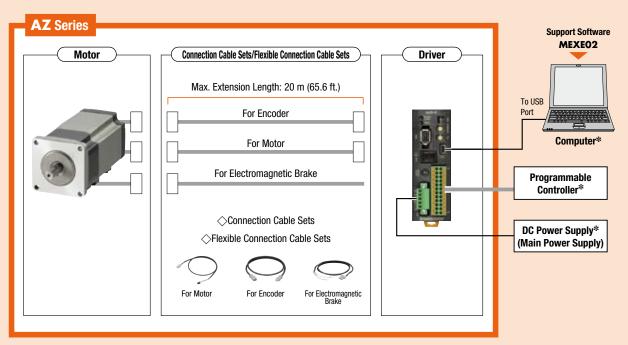
#### ●Example of System Configuration Pricing

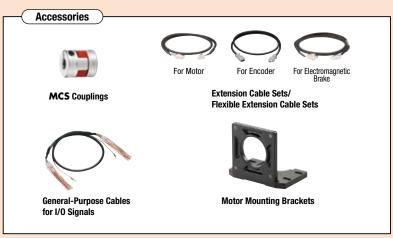
http://www.orientalmotor.com/

|          |           | - 5                     |
|----------|-----------|-------------------------|
|          | AZ Series |                         |
| Motor    | Driver    | Connection Cable<br>Set |
| AZM66MK  | AZD-KD    | CC030VZFB2              |
| \$565.00 | \$441.00  | \$82.00                 |

|                           | Accessories       |                                                         |
|---------------------------|-------------------|---------------------------------------------------------|
| Motor<br>Mounting Bracket | Flexible Coupling | General Purpose Cables<br>for I/O Signals 1 m (3.3 ft.) |
| PAL2P-5                   | MCS201010         | CC16D010B-1                                             |
| \$17.00                   | \$50.00           | \$25.00                                                 |

The system configuration shown above is an example. Other combinations are also available.


The OPERATING MANUAL Driver Edition is included in the product, but the OPERATING MANUAL Function Edition is not included. For detail, contact the nearest Oriental Motor sales office or download from Oriental Motor Website Download Page.


The motor cable and electromagnetic brake cable from the motor cannot be connected directly to the driver. When connecting to a driver, use a connection cable.

## Hybrid Control System **QSTEP** B-53

#### Combination of Standard Type Motor with an Electromagnetic Brake and Pulse Input Type Driver

An example of a single-axis system configuration with the programmable controller (equipped with the pulse oscillation function) is shown below. Motors, drivers, and a connection cable set/flexible connection cable set need to be ordered separately.







\* Not supplied.

The MEXEO2 can be downloaded from Oriental Motor Website Download Page For the functions and operating method of this product, refer to the operating manuals (Driver Edition and Function Edition). The OPERATING MANUAL Driver Edition is included in the product, but the OPERATING MANUAL Function Edition is not included. For detail, contact the nearest Oriental Motor sales office or download from Oriental Motor Website Download Page. http://www.orientalmotor.com/

#### ●Example of System Configuration Pricing

|          | AZ Series |                         |   |          |         | Accessories |             |                           |                   |                                                         |
|----------|-----------|-------------------------|---|----------|---------|-------------|-------------|---------------------------|-------------------|---------------------------------------------------------|
| Motor    | Driver    | Connection Cable<br>Set | + | +        | +       | +           | Controller  | Motor<br>Mounting Bracket | Flexible Coupling | General Purpose Cables<br>for I/O Signals 1 m (3.3 ft.) |
| AZM66MK  | AZD-K     | CC030VZFB2              |   | SCX11    | PAL2P-5 | MCS201010   | CC16D010B-1 |                           |                   |                                                         |
| \$565.00 | \$384.00  | \$82.00                 | ] | \$349.00 | \$17.00 | \$50.00     | \$25.00     |                           |                   |                                                         |

The system configuration shown above is an example. Other combinations are also available.

The motor cable and electromagnetic brake cable from the motor cannot be connected directly to the driver. When connecting to a driver, use a connection cable.

Overview

١Z

Linear Slides OSTEP EZS

Cylinders *Q*(*sтеР* **DRS2** 

Rotary Actuators *OCSTEP* **DGII** 

*OLSTEP* AR

### Product Number

Motor

6 3 2 4 1

♦ TS, PS, HPG, Harmonic Geared Type

EtherCAT Multi-Axis Driver

| AZM | 6 | 6 | A | <u>K</u> - | HP | 15 | F |
|-----|---|---|---|------------|----|----|---|
| 1   | 2 | 3 | 4 | <b>⑤</b>   | 6  | 7  | 8 |

Driver

| AZD        | - | K           | D   |
|------------|---|-------------|-----|
| <u>(1)</u> |   | <b>(2</b> ) | (3) |

Connection Cable Sets/Flexible Connection Cable Sets

| CC | 050 | V | Z |          | F | В | 2 |
|----|-----|---|---|----------|---|---|---|
| 1  | 2   | 3 | 4 | <b>⑤</b> | 6 | 7 | 8 |

| 1   | Series Name                 | AZM: AZ Series Motor                                                                                                                   |
|-----|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 2   | Motor Frame Size            | 1: 20 mm (0.79 in.)<br>2: 28 mm (1.10 in.)<br>4: 42 mm (1.65 in.) ( <b>HPG</b> Geared Type is 40 mm (1.57 in.))<br>6: 60 mm (2.36 in.) |
| 3   | Motor Case Length           |                                                                                                                                        |
| 4   | Motor Shaft Features        | A: Single Shaft M: with Electromagnetic Brake                                                                                          |
| (5) | Motor Power Supply<br>Input | K: DC Power Supply Input Type                                                                                                          |
| 6   | Gear Type                   | TS: TS Geared Type PS: PS Geared Type HP: HPG Geared Type HS: Harmonic Geared Type                                                     |
| 7   | Gear Ratio                  |                                                                                                                                        |
| 8   | Output Shaft Type           | HPG Geared Type Blank: Shaft Output F: Flange Output                                                                                   |
|     |                             |                                                                                                                                        |
| 1   | Driver type                 | AZD: AZ Series Driver                                                                                                                  |
| 2   | Power Supply Input          | <b>K</b> : 24 VDC/48 VDC                                                                                                               |
| 3   | Туре                        | Built-in Controller Type     X: Pulse Input Type with RS-485 Communication     Blank: Pulse Input Type                                 |

| 1   |                       | CC: Cable                                                                                                                                                                                                                       |
|-----|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2   | Length                | <b>010</b> : 1 m (3.3 ft.) <b>020</b> : 2 m (6.6 ft.) <b>030</b> : 3 m (9.8 ft.) <b>050</b> : 5 m (16.4 ft.) <b>070</b> : 7 m (23.0 ft.) <b>100</b> : 10 m (32.8 ft.) <b>150</b> : 15 m (49.2 ft.) <b>200</b> : 20 m (65.6 ft.) |
| 3   | Reference Number      |                                                                                                                                                                                                                                 |
| 4   | Applicable Model      | Z: AZ Series                                                                                                                                                                                                                    |
| (5) | Reference Number      | Blank: Frame Size 42 mm (1.65 in.) ( <b>HPG</b> Geared Type is 40 mm (1.57 in.)), 60 mm (2.36 in.) <b>2</b> : Frame Size 20 mm (0.79 in.), 28 mm (1.10 in.)                                                                     |
| 6   | Cable Type            | <b>F</b> : Connection Cable Set <b>R</b> : Flexible Connection Cable Set                                                                                                                                                        |
| 7   | Electromagnetic Brake | Blank: without Electromagnetic Brake  B: with Electromagnetic Brake                                                                                                                                                             |
| 8   | Power Supply Cable    | 2: DC Power Supply Input                                                                                                                                                                                                        |

#### Product Line

Motors, drivers, and connection cables must be ordered separately.

#### Motor

#### 





#### ♦ Standard Type with an Electromagnetic Brake

| Frame Size       | Product Name | List Price |
|------------------|--------------|------------|
| 42 mm (1.65 in.) | AZM46MK      | \$466.00   |
| 60 mm (2.26 in ) | AZM66MK      | \$565.00   |
| 60 mm (2.36 in.) | AZM69MK      | \$571.00   |



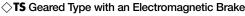
Overview

*XSTEP*Absolute

Linear Slides *OLSTEP* 

Cylinders *OSTEP* 

Cylinders *XSTEP* **DRS2** 


Rotary Actuators OSTEP DGII

*OLSTEP*AR



#### 

| Frame Size       | Product Name  | List Price |
|------------------|---------------|------------|
|                  | AZM46AK-TS3.6 | \$441.00   |
| 42 mm (1.65 in.) | AZM46AK-TS7.2 | \$441.00   |
|                  | AZM46AK-TS10  | \$457.00   |
|                  | AZM46AK-TS20  | \$457.00   |
|                  | AZM46AK-TS30  | \$457.00   |
|                  | AZM66AK-TS3.6 | \$519.00   |
|                  | AZM66AK-TS7.2 | \$519.00   |
| 60 mm (2.36 in.) | AZM66AK-TS10  | \$534.00   |
| , ,              | AZM66AK-TS20  | \$534.00   |
|                  | AZM66AK-TS30  | \$534.00   |



| Frame Size Product Name              | List Price |
|--------------------------------------|------------|
| Floudt Name                          | 2.00       |
| AZM46MK-TS3.6                        | \$599.00   |
| AZM46MK-TS7.2                        | \$599.00   |
| 42 mm (1.65 in.) <b>AZM46MK-TS10</b> | \$615.00   |
| AZM46MK-TS20                         | \$615.00   |
| AZM46MK-TS30                         | \$615.00   |
| AZM66MK-TS3.6                        | \$722.00   |
| AZM66MK-TS7.2                        | \$722.00   |
| 60 mm (2.36 in.) <b>AZM66MK-TS10</b> | \$738.00   |
| AZM66MK-TS20                         | \$738.00   |
| AZM66MK-TS30                         | \$738.00   |



#### ◇PS Geared Type

| Frame Size       | Product Name  | List Price |
|------------------|---------------|------------|
|                  | AZM46AK-PS5   | \$567.00   |
|                  | AZM46AK-PS7.2 | \$567.00   |
| 40 mm (1 CE in ) | AZM46AK-PS10  | \$567.00   |
| 42 mm (1.65 in.) | AZM46AK-PS25  | \$624.00   |
|                  | AZM46AK-PS36  | \$624.00   |
|                  | AZM46AK-PS50  | \$624.00   |
|                  | AZM66AK-PS5   | \$678.00   |
|                  | AZM66AK-PS7.2 | \$678.00   |
| CO (O OC i )     | AZM66AK-PS10  | \$678.00   |
| 60 mm (2.36 in.) | AZM66AK-PS25  | \$757.00   |
|                  | AZM66AK-PS36  | \$757.00   |
|                  | AZM66AK-PS50  | \$757.00   |

### ◇PS Geared Type with an Electromagnetic Brake

| Frame Size       | Product Name  | List Price |
|------------------|---------------|------------|
|                  | AZM46MK-PS5   | \$725.00   |
|                  | AZM46MK-PS7.2 | \$725.00   |
| 40 mm (1 CE in ) | AZM46MK-PS10  | \$725.00   |
| 42 mm (1.65 in.) | AZM46MK-PS25  | \$782.00   |
|                  | AZM46MK-PS36  | \$782.00   |
|                  | AZM46MK-PS50  | \$782.00   |
|                  | AZM66MK-PS5   | \$881.00   |
|                  | AZM66MK-PS7.2 | \$881.00   |
| CO (O OC i )     | AZM66MK-PS10  | \$881.00   |
| 60 mm (2.36 in.) | AZM66MK-PS25  | \$961.00   |
|                  | AZM66MK-PS36  | \$961.00   |
|                  | AZM66MK-PS50  | \$961.00   |



#### ♦ HPG Geared Type

| Frame Size       | Product Name  | List Price |
|------------------|---------------|------------|
|                  | AZM46AK-HP5   | \$669.00   |
| 40 mm (1 E7 in ) | AZM46AK-HP5F  | \$658.00   |
| 40 mm (1.57 in.) | AZM46AK-HP9   | \$669.00   |
|                  | AZM46AK-HP9F  | \$658.00   |
| 60 mm (2.36 in.) | AZM66AK-HP5   | \$904.00   |
|                  | AZM66AK-HP5F  | \$887.00   |
|                  | AZM66AK-HP15  | \$1,070.00 |
|                  | AZM66AK-HP15F | \$1,053.00 |

## → HPG Geared Type with an Electromagnetic Brake

| Frame Size       | Product Name  | List Price |
|------------------|---------------|------------|
|                  | AZM46MK-HP5   | \$827.00   |
| 40 mm (1 E7 in ) | AZM46MK-HP5F  | \$816.00   |
| 40 mm (1.57 in.) | AZM46MK-HP9   | \$827.00   |
|                  | AZM46MK-HP9F  | \$816.00   |
| 60 mm (2.36 in.) | AZM66MK-HP5   | \$1,107.00 |
|                  | AZM66MK-HP5F  | \$1,090.00 |
|                  | AZM66MK-HP15  | \$1,274.00 |
|                  | AZM66MK-HP15F | \$1,257.00 |







#### 

AC Frama S

| Frame Size       | Product Name  | List Price |
|------------------|---------------|------------|
| 40 mm (1 CF in ) | AZM46AK-HS50  | \$901.00   |
| 42 mm (1.65 in.) | AZM46AK-HS100 | \$901.00   |
| CO mm (2.26 in ) | AZM66AK-HS50  | \$1,215.00 |
| 60 mm (2.36 in.) | AZM66AK-HS100 | \$1,215.00 |

# ♦ Harmonic Geared Type with an Electromagnetic Brake Frame Size P



| Frame Size       | Product Name  | List Price |
|------------------|---------------|------------|
| 42 mm (1 65 in ) | AZM46MK-HS50  | \$1,059.00 |
| 42 mm (1.65 in.) | AZM46MK-HS100 | \$1,059.00 |
| CO (O OC i )     | AZM66MK-HS50  | \$1,418.00 |
| 60 mm (2.36 in.) | A7M66MK-US100 | ¢1 /10 00  |

#### EtherCAT Multi-Axis Driver

Input

#### Driver

#### Built-in Controller Type

| ⇔Built-in Controller Type |              |            |
|---------------------------|--------------|------------|
| Power Supply Input        | Product Name | List Price |
| 24/48 VDC                 | AZD-KD       | \$441.00   |

#### ○Pulse Input Type with RS-485 Communication





#### 

| Power Supply Input | Product Name | List Price |
|--------------------|--------------|------------|
| 24/48 VDC          | AZD-K        | \$384.00   |

#### Connection Cable Sets/Flexible Connection Cable Sets

Use a flexible connection cable set if the cable will be bent. We also offer extension cables and flexible extension cables that can be added to a connection cable.

The motor cable and electromagnetic brake cable from the motor cannot be connected directly to the driver. When connecting to a driver, use a connection cable.

#### [For AZM14, AZM15, AZM24, and AZM26]



#### 

| Product Line          | Length m (ft.) | Product Name | List Price |
|-----------------------|----------------|--------------|------------|
|                       | 1 (3.3)        | CC010VZ2F2   | \$35.00    |
|                       | 2 (6.6)        | CC020VZ2F2   | \$50.00    |
|                       | 3 (9.8)        | CC030VZ2F2   | \$62.00    |
| Connection Cable Sets | 5 (16.4)       | CC050VZ2F2   | \$110.00   |
| Connection Capie Sets | 7 (23.0)       | CC070VZ2F2   | \$136.00   |
|                       | 10 (32.8)      | CC100VZ2F2   | \$176.00   |
|                       | 15 (49.2)      | CC150VZ2F2   | \$243.00   |
|                       | 20 (65.6)      | CC200VZ2F2   | \$310.00   |
|                       | 1 (3.3)        | CC010VZ2R2   | \$84.00    |
|                       | 2 (6.6)        | CC020VZ2R2   | \$99.00    |
|                       | 3 (9.8)        | CC030VZ2R2   | \$111.00   |
| Flexible              | 5 (16.4)       | CC050VZ2R2   | \$141.00   |
| Connection Cable Sets | 7 (23.0)       | CC070VZ2R2   | \$180.00   |
|                       | 10 (32.8)      | CC100VZ2R2   | \$236.00   |
|                       | 15 (49.2)      | CC150VZ2R2   | \$332.00   |
|                       | 20 (65.6)      | CC200VZ2R2   | \$426.00   |

## Hybrid Control System **Q**STEP

#### [For AZM46, AZM48, AZM66, and AZM69]





#### For Motor For Encoder

|                       | r              | For Mot      | or For Encoder |
|-----------------------|----------------|--------------|----------------|
| Product Line          | Length m (ft.) | Product Name | List Price     |
|                       | 1 (3.3)        | CC010VZF2    | \$35.00        |
|                       | 2 (6.6)        | CC020VZF2    | \$50.00        |
|                       | 3 (9.8)        | CC030VZF2    | \$62.00        |
| Connection Cable Sets | 5 (16.4)       | CC050VZF2    | \$110.00       |
| Connection Capie Sets | 7 (23.0)       | CC070VZF2    | \$136.00       |
|                       | 10 (32.8)      | CC100VZF2    | \$176.00       |
|                       | 15 (49.2)      | CC150VZF2    | \$243.00       |
|                       | 20 (65.6)      | CC200VZF2    | \$310.00       |
|                       | 1 (3.3)        | CC010VZR2    | \$84.00        |
|                       | 2 (6.6)        | CC020VZR2    | \$99.00        |
|                       | 3 (9.8)        | CC030VZR2    | \$111.00       |
| Flexible              | 5 (16.4)       | CC050VZR2    | \$141.00       |
| Connection Cable Sets | 7 (23.0)       | CC070VZR2    | \$180.00       |
|                       | 10 (32.8)      | CC100VZR2    | \$236.00       |
|                       | 15 (49.2)      | CC150VZR2    | \$332.00       |
| F                     | 20 (65.6)      | CC200VZR2    | \$426.00       |

## 

Connection Cable Sets





CC070VZRB2

CC100VZRB2

CC150VZRB2

CC200VZRB2



\$240.00

\$311.00

\$432.00

\$551.00

| Electromagnetic B     | rake For Motor | For Encoder  | For Electromagnetic Brake |          |
|-----------------------|----------------|--------------|---------------------------|----------|
| Product Line          | Length m (ft.) | Product Name | List Price                | Ov       |
|                       | 1 (3.3)        | CC010VZFB2   | \$52.00                   | O        |
|                       | 2 (6.6)        | CC020VZFB2   | \$67.00                   |          |
|                       | 3 (9.8)        | CC030VZFB2   | \$82.00                   | $\alpha$ |
| Connection Cable Sets | 5 (16.4)       | CC050VZFB2   | \$135.00                  | Ab       |
| Connection Gable Sets | 7 (23.0)       | CC070VZFB2   | \$166.00                  | AZ       |
|                       | 10 (32.8)      | CC100VZFB2   | \$213.00                  | L        |
|                       | 15 (49.2)      | CC150VZFB2   | \$293.00                  | 6        |
|                       | 20 (65.6)      | CC200VZFB2   | \$372.00                  | E        |
|                       | 1 (3.3)        | CC010VZRB2   | \$114.00                  | c        |
|                       | 2 (6.6)        | CC020VZRB2   | \$134.00                  | 2        |
|                       | 3 (9.8)        | CC030VZRB2   | \$151.00                  | E        |
| Flexible              | 5 (16.4)       | CC050VZRB2   | \$191.00                  | 6        |

verview

Linear Slides CSTEP EZS

Cylinders ĆSTEР DR\$2

Rotary Actuators *OCSTEP* **DGII** 

CXSTEP AR

### Included

#### Motor

|                 | Included                                         | Parallel | Motor Mounting        | Operating |
|-----------------|--------------------------------------------------|----------|-----------------------|-----------|
| Type            |                                                  | key      | Screws                | Manual    |
| Standard        |                                                  | _        | _                     |           |
| TS Geared       | Frame Size 42 mm (1.65 in.)                      | _        | _                     |           |
| 13 dealed       | Frame Size 60 mm (2.36 in.)                      | 1 pc.    | M4×60 P0.7 (4 Screws) |           |
| PS Geared       | Frame Size 42 mm (1.65 in.),<br>60 mm (2.36 in.) | 1 pc.    | -                     | 1 Copy    |
| HPG Geared      | Shaft Output                                     | 1 pc.    | -                     |           |
| nrg dealed      | Flange Output                                    | _        | -                     |           |
| Harmonic Geared | Frame Size 42 mm (1.65 in.),<br>60 mm (2.36 in.) | 1 pc.    | _                     |           |

<sup>•</sup> For product functions and operating methods, refer to the operating manual (for functions). The operating manual for functions is not included with the product. Please contact the nearest Oriental Motor sales office, or download it from the Oriental Motor website.

#### Driver

| Туре                | Included | Connector                                          | Operating<br>Manual |
|---------------------|----------|----------------------------------------------------|---------------------|
| Common to All types |          | - CN4 Connector (1 pc.)<br>- CN1 Connector (1 pc.) | 1 Copy              |

7 (23.0)

10 (32.8)

15 (49.2)

20 (65.6)

#### Connection Cable Sets/Flexible Connection Cable Sets

| Type                           | Operating Manual |
|--------------------------------|------------------|
| Connection Cable Sets          | =                |
| Flexible Connection Cable Sets | 1 Copy           |

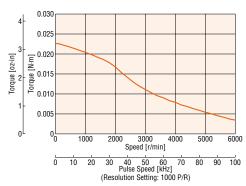
## **Standard Type** Frame Size 20 (0.79 in.) mm, 28 mm (1.10 in.)

## Specifications

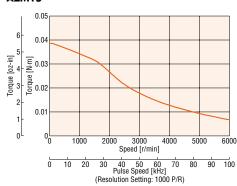
 $\epsilon$ 

Input

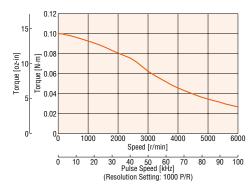
**B-58** 


DC Input

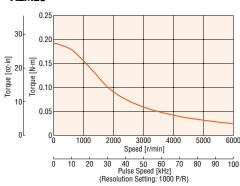
EtherCAT Multi-Axis Driver


| Motor Product Name                    | e Single Shaft                             | AZM14AK                       | AZM15AK                      | AZM24AK                      | AZM26AK                     |
|---------------------------------------|--------------------------------------------|-------------------------------|------------------------------|------------------------------|-----------------------------|
|                                       | Built-in Controller Type                   |                               | AZD                          | -KD                          |                             |
| <b>Driver Product Name</b>            | Pulse Input Type with RS-485 Communication |                               | AZD                          | -KX                          |                             |
|                                       | Pulse Input Type                           |                               | AZI                          | D-K                          |                             |
| Maximum Holding                       | Torque N·m (oz-in)                         | 0.02 (2.8)                    | 0.036 (5.1)                  | 0.095 (13.4)                 | 0.19 (26)                   |
| Holding Torque at<br>Motor Standstill | N·m (oz-in)                                | 0.01 (1.42)                   | 0.018 (2.5)                  | 0.047 (6.6)                  | 0.095 (13.4)                |
| Rotor Inertia                         | J: kg·m² (oz-in²)                          | 2.7×10 <sup>-7</sup> (0.0148) | 3.9×10 <sup>-7</sup> (0.021) | 9.2×10 <sup>-7</sup> (0.050) | 17×10 <sup>-7</sup> (0.093) |
| Resolution                            | Resolution Setting: 1000 P/R               |                               | 0.36°                        | /Pulse                       |                             |
| Power Supply                          | Voltage                                    |                               | 24 VD0                       | C±5%                         |                             |
| Input                                 | Input Current A                            | 0.5                           | 0.6                          | 1.6                          | 1.6                         |

### Speed – Torque Characteristics (Reference Values)


#### AZM14




#### AZM15



#### AZM24



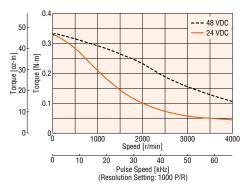
#### AZM26



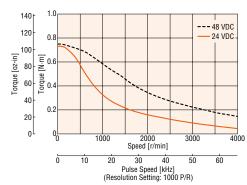
- Data for the speed torque characteristics is based on Oriental Motor's internal measurement conditions. If the conditions are changed, the characteristics may also change as a result.
- Depending on the driving conditions, a considerable amount of heat may be generated by the motor. To protect the absolute sensor, be sure to keep the motor case temperature at 80°C (176°F) max.

## **Standard Type** Frame Size 42 mm (1.65 in.), 60 mm (2.36 in.)

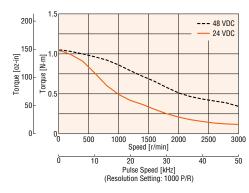
## Specifications


**194**° 184 €

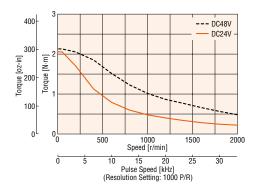
| Motor Product Name  | Single Shaft                |                         | AZM46AK                                                      | AZM48AK                     | AZM66AK                                                      | AZM69AK                                                      |  |  |
|---------------------|-----------------------------|-------------------------|--------------------------------------------------------------|-----------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--|--|
| MOTOL FLORING MAILE | with Electromagnetic Brake  |                         | AZM46MK                                                      | -                           | AZM66MK                                                      | AZM69MK                                                      |  |  |
|                     | Built-in Controller Type    |                         |                                                              | AZI                         | D-KD                                                         |                                                              |  |  |
| Driver Product Name | Pulse Input Type with RS-48 | 5 Communication         |                                                              | AZI                         | D-KX                                                         |                                                              |  |  |
|                     | Pulse Input Type            |                         |                                                              | AZD-K                       |                                                              |                                                              |  |  |
| Maximum HoldingTo   | orque                       | N·m (oz-in)             | 0.3 (42)                                                     | 0.72 (102)                  | 1 (142)                                                      | 2 (280)                                                      |  |  |
| Holding Torque at   | Power On                    | N·m (oz-in)             | 0.15 (21)                                                    | 0.36 (51)                   | 0.5 (71)                                                     | 1 (142)                                                      |  |  |
| Motor Standstill    | Electromagnetic Brake       | N·m (oz-in)             | 0.15 (21)                                                    | =                           | 0.5 (71)                                                     | 1 (142)                                                      |  |  |
| Rotor Inertia       |                             | J: kg·m² (oz-in²)       | 55×10 <sup>-7</sup> (0.30)<br>[71×10 <sup>-7</sup> (0.39)]*1 | 115×10 <sup>-7</sup> (0.63) | 370×10 <sup>-7</sup> (2.0)<br>[530×10 <sup>-7</sup> (2.9)]*1 | 740×10 <sup>-7</sup> (4.0)<br>[900×10 <sup>-7</sup> (4.9)]*1 |  |  |
| Resolution          | Resolu                      | ution Setting: 1000 P/R |                                                              | 0.36                        | °/Pulse                                                      |                                                              |  |  |
| Power Supply        | Voltage                     |                         | 24 VDC±5%*2/<br>48 VDC±5%*3                                  | 24 VDC±5%/<br>48 VDC±5%*3   |                                                              | ±5%* <sup>2</sup> /<br>±5%* <sup>3</sup>                     |  |  |
| Input               | Input current               | Α                       | 1.72 [1.8]*1                                                 | 2.2                         | 3.55 [3.8]*1                                                 | 3.45 [3.7]* <sup>1</sup>                                     |  |  |


<sup>\*1</sup> The bracket [] indicates the value for the product with an electromagnetic brake.

### Speed – Torque Characteristics (Reference Values)







#### AZM48



#### AZM66



#### AZM69



#### Note

- Data for the speed torque characteristics is based on Oriental Motor's internal measurement conditions. If the conditions are changed, the characteristics may also change as a result.
- Depending on the driving conditions, a considerable amount of heat may be generated by the motor. To protect the absolute sensor, be sure to keep the motor case temperature at 80°C (176°F) max. (When conforming to the UL/CSA Standards, the temperature of the motor case must be kept at 75°C (167°F) max., since the motor is recognized as heat-resistant class A.)

Overview

Linear Slides ØSTEF EZS

Cylinders ĆSTEР DRS2

Rotary Actuators **OSTEP DGII** 

**USTEP** AR

<sup>\*2</sup> For the type with an electromagnetic brake, 24 VDC±4% specification applies if the wiring distance between the motor and driver is extended to 20 m (65.6 ft.) using a cable.

<sup>\*3</sup> When the motor is operated with 48 VDC input, as a reference, keep the load inertia 10 times the rotor inertial ratio or less and twice the safety factor or more when calculating the acceleration torque. (Excluding **AZM46**)

<sup>\*4</sup> Only for the motor part.

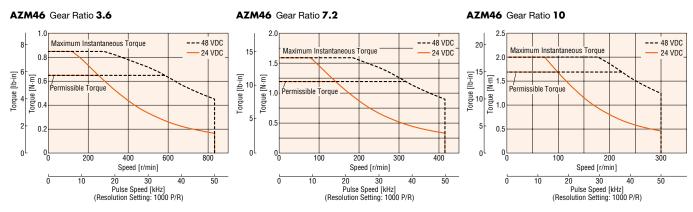
## TS Geared Type Frame Size 42 mm (1.65 in.)

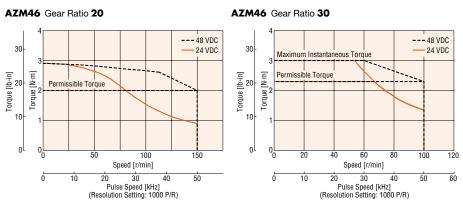
## Specifications

**.₩**"\*3C€

Input

**B-60** 


DC Input


EtherCAT Multi-Axis Driver

|                     |                            |                           |               |               |                                                      |              | U # 1 1 0 0 0 0 0 |
|---------------------|----------------------------|---------------------------|---------------|---------------|------------------------------------------------------|--------------|-------------------|
| Motor Product Name  | Single Shaft               |                           | AZM46AK-TS3.6 | AZM46AK-TS7.2 | AZM46AK-TS10                                         | AZM46AK-TS20 | AZM46AK-TS30      |
| WOLOF Product Name  | with Electromagnetic Brak  | e                         | AZM46MK-TS3.6 | AZM46MK-TS7.2 | AZM46MK-TS10                                         | AZM46MK-TS20 | AZM46MK-TS30      |
|                     | Built-in Controller Type   |                           |               |               | AZD-KD                                               |              |                   |
| Driver Product Name | Pulse Input Type with RS-4 | 185 Communication         |               |               | AZD-KX                                               |              |                   |
|                     | Pulse Input Type           |                           |               |               | AZD-K                                                |              |                   |
| Maximum Holding     | Torque                     | N·m (oz-in)               | 0.65 (92)     | 1.2 (170)     | 1.7 (240)                                            | 2 (280)      | 2.3 (320)         |
| Rotor Inertia       |                            | J: kg·m² (oz-in²)         |               | 55:           | ×10 <sup>-7</sup> (0.30) [71×10 <sup>-7</sup> (0.39) | ]*1          |                   |
| Gear Ratio          |                            |                           | 3.6           | 7.2           | 10                                                   | 20           | 30                |
| Resolution          | Res                        | olution Setting: 1000 P/R | 0.1°/Pulse    | 0.05°/Pulse   | 0.036°/Pulse                                         | 0.018°/Pulse | 0.012°/Pulse      |
| Permissible Torque  |                            | N·m (oz-in)               | 0.65 (92)     | 1.2 (170)     | 1.7 (240)                                            | 2 (280)      | 2.3 (320)         |
| Maximum Instanta    | neous Torque*              | N·m (oz-in)               | 0.85 (120)    | 1.6 (220)     | 2 (280)                                              | *            | 3 (420)           |
| Holding Torque at   | Power On                   | N·m (oz-in)               | 0.54 (76)     | 1 (142)       | 1.5 (210)                                            | 1.8 (250)    | 2.3 (320)         |
| Motor Standstill    | Electromagnetic Brake      | N·m (oz-in)               | 0.54 (76)     | 1 (142)       | 1.5 (210)                                            | 1.8 (250)    | 2.3 (320)         |
| Speed Range         |                            | r/min                     | 0 - 833       | 0 - 416       | 0 - 300                                              | 0 - 150      | 0 - 100           |
| Backlash            |                            | arcmin                    | 45 (0.75°)    | 25 (0         | 1.42°)                                               | 15 (0        | ).25°)            |
| Power Supply        | Voltage                    |                           |               | 2             | 4V DC±5% <b>*</b> 2/48 VDC ±5                        | %            |                   |
| Input               | Input current              | А                         |               |               | 1.72 [1.8]* <sup>1</sup>                             |              |                   |

<sup>\*</sup>For the geared motor output torque, refer to the speed - torque characteristics.

## ■Speed – Torque Characteristics (Reference Values)





<sup>\*1</sup> The bracket [] indicates the value for the product with an electromagnetic brake.

<sup>\*2</sup> For the type with an electromagnetic brake, 24 VDC±4% specification applies if the wiring distance between the motor and driver is extended to 20 m (65.6 ft.) using a cable.

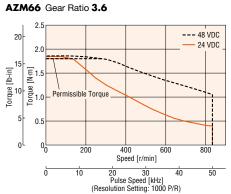
<sup>\*3</sup> Only for the motor part

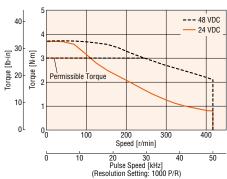
Data for the speed - torque characteristics is based on Oriental Motor's internal measurement conditions. If the conditions are changed, the characteristics may also change as a result.

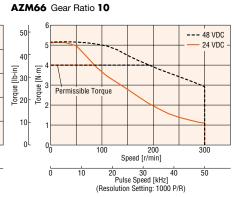
Depending on the driving conditions, a considerable amount of heat may be generated by the motor. To protect the absolute sensor, be sure to keep the motor case temperature at 80°C (176°F) max. (When conforming to the UL/CSA Standards, the temperature of the motor case must be kept at 75°C (167°F) max., since the motor is recognized as heat-resistant class A.)

## TS Geared Type Frame Size 60 mm (2.36 in.)

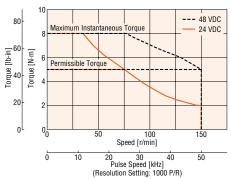
### Specifications


| Motor Product Name  | Single Shaft              |                           | AZM66AK-TS3.6 | AZM66AK-TS7.2 | AZM66AK-TS10                                         | AZM66AK-TS20 | AZM66AK-TS30 |
|---------------------|---------------------------|---------------------------|---------------|---------------|------------------------------------------------------|--------------|--------------|
| WOLOT Product Name  | with Electromagnetic Brak | (e                        | AZM66MK-TS3.6 | AZM66MK-TS7.2 | AZM66MK-TS10                                         | AZM66MK-TS20 | AZM66MK-TS30 |
|                     | Built-in Controller Type  |                           |               |               | AZD-KD                                               |              |              |
| Driver Product Name | Pulse Input Type with RS- | 485 Communication         |               |               | AZD-KX                                               |              |              |
|                     | Pulse Input Type          |                           |               |               | AZD-K                                                |              |              |
| Maximum Holding     | Torque                    | N·m (lb-in)               | 1.8 (15.9)    | 3 (26)        | 4 (35)                                               | 5 (44)       | 6 (53)       |
| Rotor Inertia       | Inertia J: kg·m² (oz-in²) |                           |               |               | 0×10 <sup>-7</sup> (2.0) [530×10 <sup>-7</sup> (2.9) | ]*1          |              |
| Gear Ratio          |                           |                           | 3.6           | 7.2           | 10                                                   | 20           | 30           |
| Resolution          | Res                       | olution Setting: 1000 P/R | 0.1°/Pulse    | 0.05°/Pulse   | 0.036°/Pulse                                         | 0.018°/Pulse | 0.012°/Pulse |
| Permissible Torque  |                           | N·m (lb-in)               | 1.8 (15.9)    | 3 (26)        | 4 (35)                                               | 5 (44)       | 6 (53)       |
| Maximum Instanta    | neous Torque*             | N·m (lb-in)               | *             | *             | *                                                    | 8 (70)       | 10 (88)      |
| Holding Torque at   | Power On                  | N⋅m (lb-in)               | 1.1 (9.7)     | 2.2 (19.4)    | 3 (26)                                               | 5 (44)       | 6 (53)       |
| Motor Standstill    | Electromagnetic Brake     | N⋅m (lb-in)               | 1.1 (9.7)     | 2.2 (19.4)    | 3 (26)                                               | 5 (44)       | 6 (53)       |
| Speed Range         |                           | r/min                     | 0 - 833       | 0 - 416       | 0 - 300                                              | 0 - 150      | 0 - 100      |
| Backlash            |                           | arcmin                    | 35 (0.59°)    | 15 (0         | ).25°)                                               | 10 (0        | ).17°)       |
| Power Supply        | Voltage                   |                           |               | 24            | VDC±5%*2/48 VDC ±5%                                  | *3           |              |
| Input               | Input current             | A                         |               |               | 3.55 [3.8]*1                                         |              |              |

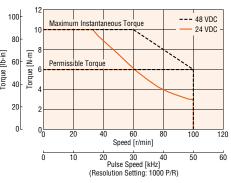

<sup>\*</sup>For the geared motor output torque, refer to the speed - torque characteristics.


AZM66 Gear Ratio 7.2

AR


## Speed - Torque Characteristics (Reference Values)






#### AZM66 Gear Ratio 20







#### Note

Data for the speed - torque characteristics is based on Oriental Motor's internal measurement conditions. If the conditions are changed, the characteristics may also change as a result.

Depending on the driving conditions, a considerable amount of heat may be generated by the motor. To protect the absolute sensor, be sure to keep the motor case temperature at 80°C (176°F) max. (When conforming to the UL/CSA Standards, the temperature of the motor case must be kept at 75°C (167°F) max., since the motor is recognized as heat-resistant class A.)

Overview

Slides

CSTEF

Cylinders **Й**STEP DR\$2

Rotary Actuators *OCSTEP* DGII

**USTEP** 

<sup>\*1</sup> The bracket [] indicates the value for the product with an electromagnetic brake.

<sup>\*2</sup> For the type with an electromagnetic brake, 24 VDC±4% specification applies if the wiring distance between the motor and driver is extended to 20 m (65.6 ft.) using a cable.

<sup>\*3</sup> When the motor is operated with 48 VDC input, as a reference, keep the load inertia 10 times the rotor inertial ratio or less and twice the safety factor or more when calculating the acceleration torque.

<sup>\*4</sup> Only for the motor part.

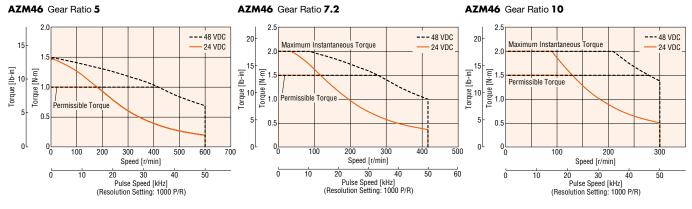
## PS Geared Type Frame Size 42 mm (1.65 in.)

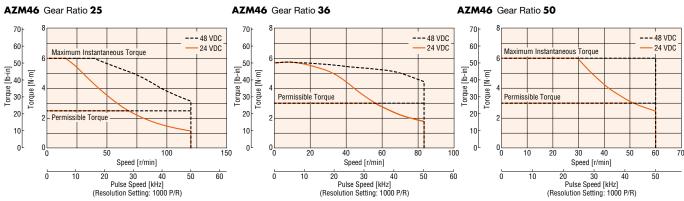
## Specifications

**GN**° "3" C €

AC Input

**B-62** 


DC Input


EtherCAT Multi-Axis Driver

| _                          |                          |                              |                       |               |                               |                                        |              | C # 105    | -    |
|----------------------------|--------------------------|------------------------------|-----------------------|---------------|-------------------------------|----------------------------------------|--------------|------------|------|
| Motor Product Name         | Single Shaft             |                              | AZM46AK-PS5           | AZM46AK-PS7.2 | AZM46AK-PS10                  | AZM46AK-PS25                           | AZM46AK-PS36 | AZM46AK-   | PS50 |
| Wotor Product Name         | with Electromagnetic E   | Brake                        | AZM46MK-PS5           | AZM46MK-PS7.2 | AZM46MK-PS10                  | AZM46MK-PS25                           | AZM46MK-PS36 | AZM46MK-   | PS50 |
|                            | Built-in Controller Type |                              |                       |               | AZD                           | -KD                                    |              |            |      |
| <b>Driver Product Name</b> | Pulse Input Type with F  | RS-485 Communication         |                       |               | AZD                           | -кх                                    |              |            |      |
|                            | Pulse Input Type         |                              |                       |               | AZI                           | D-K                                    |              |            |      |
| Maximum Holding            | Torque                   | N·m (oz-in)                  | 1 (142)               | 1.5           | 210)                          | 2.5 (350)                              | 3 (4         | 120)       |      |
| Rotor Inertia              |                          | J: kg·m² (oz-in²)            |                       |               | 55×10 <sup>-7</sup> (0.30) [7 | ′1×10 <sup>-7</sup> (0.39)] <b>*</b> 1 |              |            |      |
| Gear Ratio                 |                          |                              | 5                     | 7.2           | 10                            | 25                                     | 36           | 50         |      |
| Resolution                 | ļ                        | Resolution Setting: 1000 P/R | 0.072°/Pulse          | 0.05°/Pulse   | 0.036°/Pulse                  | 0.0144°/Pulse                          | 0.01°/Pulse  | 0.0072°/Pu | ılse |
| Permissible Torque         |                          | N·m (oz-in)                  | 1 (142)               | 1.5           | 210)                          | 2.5 (350)                              | 3 (4         | 120)       |      |
| Maximum Instanta           | neous Torque*            | N·m (oz-in)                  | *                     | 2 (2          | 280)                          | 6 (850)                                | *            | 6 (850)    |      |
| Holding Torque at          | Power On                 | N·m (oz-in)                  | 0.75 (106)            | 1 (142)       | 1.5 (210)                     | 2.5 (350)                              | 3 (4         | 120)       |      |
| Motor Standstill           | Electromagnetic Brake    | N·m (oz-in)                  | 0.75 (106)            | 1 (142)       | 1.5 (210)                     | 2.5 (350)                              | 3 (4         | 120)       |      |
| Speed Range                |                          | r/min                        | 0 - 600               | 0 - 416       | 0 - 300                       | 0 - 120                                | 0 - 83       | 0 - 60     |      |
| Backlash                   |                          | arcmin                       |                       |               | 15 (0                         | ).25°)                                 |              |            |      |
| Power Supply               | Voltage                  |                              | 24 VDC±5%*2/48 VDC±5% |               |                               |                                        |              |            |      |
| Input                      | Input current            | A                            |                       |               | 1.72 [                        | 1.8]* <sup>1</sup>                     |              | -          |      |

<sup>\*</sup>For the geared motor output torque, refer to the speed - torque characteristics.

## ■Speed – Torque Characteristics (Reference Values)





<sup>\*1</sup> The bracket [] indicates the value for the product with an electromagnetic brake.

<sup>\*2</sup> For the type with an electromagnetic brake, 24 VDC±4% specification applies if the wiring distance between the motor and driver is extended to 20 m (65.6 ft.) using a cable.

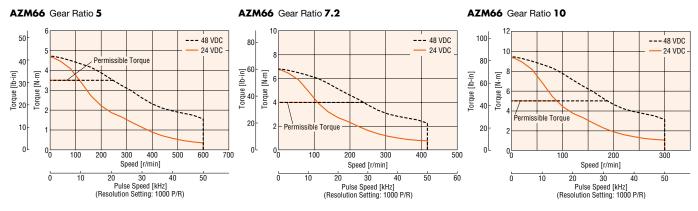
<sup>3</sup> Only for the motor part

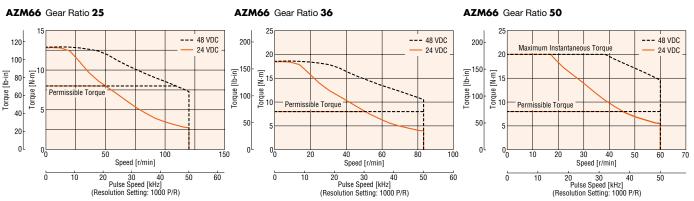
Data for the speed - torque characteristics is based on Oriental Motor's internal measurement conditions. If the conditions are changed, the characteristics may also change as a result.

Depending on the driving conditions, a considerable amount of heat may be generated by the motor. To protect the absolute sensor, be sure to keep the motor case temperature at 80°C (176°F) max. (When conforming to the UL/CSA Standards, the temperature of the motor case must be kept at 75°C (167°F) max., since the motor is recognized as heat-resistant class A.)

## PS Geared Type Frame Size 60 mm (2.36 in.)

### Specifications


**c¶3**°<sub>us</sub>\*⁴ C €


| Mater Draduct Name  | Single Shaft             |                              | AZM66AK-PS5  | AZM66AK-PS7.2 | AZM66AK-PS10                 | AZM66AK-PS25                 | AZM66AK-PS36 | AZM66AK-PS50  |
|---------------------|--------------------------|------------------------------|--------------|---------------|------------------------------|------------------------------|--------------|---------------|
| Motor Product Name  | with Electromagnetic E   | Brake                        | AZM66MK-PS5  | AZM66MK-PS7.2 | AZM66MK-PS10                 | AZM66MK-PS25                 | AZM66MK-PS36 | AZM66MK-PS50  |
|                     | Built-in Controller Type | 1                            |              |               | AZD                          | -KD                          |              |               |
| Driver Product Name | Pulse Input Type with F  | RS-485 Communication         |              |               | AZD                          | -KX                          |              |               |
|                     | Pulse Input Type         |                              |              |               | AZI                          | D-K                          |              |               |
| Maximum Holding     | Torque                   | N·m (lb-in)                  | 3.5 (30)     | 4 (35)        | 5 (44)                       |                              | 8 (70)       |               |
| Rotor Inertia       |                          | J: kg·m² (oz-in²)            |              |               | 370×10 <sup>-7</sup> (2) [53 | 30×10 <sup>-7</sup> (2.9)]*1 |              |               |
| Gear Ratio          |                          |                              | 5            | 7.2           | 10                           | 25                           | 36           | 50            |
| Resolution          | ļ                        | Resolution Setting: 1000 P/R | 0.072°/Pulse | 0.05°/Pulse   | 0.036°/Pulse                 | 0.0144°/Pulse                | 0.01°/Pulse  | 0.0072°/Pulse |
| Permissible Torque  |                          | N·m (lb-in)                  | 3.5 (30)     | 4 (35)        | 5 (44)                       |                              | 8 (70)       |               |
| Maximum Instantai   | neous Torque*            | N·m (lb-in)                  | *            | *             | *                            | *                            | *            | 20            |
| Holding Torque at   | Power On                 | N⋅m (lb-in)                  | 2.5 (22)     | 3.6 (31)      | 5 (44)                       | 7.6 (67)                     | 8 (          | 70)           |
| Motor Standstill    | Electromagnetic Brake    | N⋅m (lb-in)                  | 2.5 (22)     | 3.6 (31)      | 5 (44)                       | 7.6 (67)                     | 8 (          | 70)           |
| Speed Range         |                          | r/min                        | 0 - 600      | 0 - 416       | 0 - 300                      | 0 - 120                      | 0 - 83       | 0 - 60        |
| Backlash            |                          | arcmin                       |              | 7 (0.12°)     |                              |                              | 9 (0.15°)    |               |
| Power Supply        | Voltage                  |                              |              |               | 24 VDC±5%*2/                 | 48 VDC ±5%*3                 |              |               |
| Input               | Input current            | А                            |              |               | 3.55 (                       | 3.8)*1                       |              |               |

<sup>\*</sup>For the geared motor output torque, refer to the speed - torque characteristics.

## **USTEP**

## Speed – Torque Characteristics (Reference Values)





#### Note

Data for the speed - torque characteristics is based on Oriental Motor's internal measurement conditions. If the conditions are changed, the characteristics may also change as a result.

Depending on the driving conditions, a considerable amount of heat may be generated by the motor. To protect the absolute sensor, be sure to keep the motor case temperature at 80°C (176°F) max. (When conforming to the UL/CSA Standards, the temperature of the motor case must be kept at 75°C (167°F) max., since the motor is recognized as heat-resistant class A.)

Overview

Slides **CASTER** 

Cylinders **Й**STEP DR\$2

Rotary Actuators *OCSTEP* DGII

AR

<sup>\*1</sup> The bracket [] indicates the value for the product with an electromagnetic brake.

<sup>\*2</sup> For the type with an electromagnetic brake, 24 VDC ± 4% specification applies if the wiring distance between the motor and driver is extended to 20 m (65.6 ft.) using a cable.

<sup>\*3</sup> When the motor is operated with 48 VDC input, as a reference, keep the load inertia 10 times the rotor inertial ratio or less and twice the safety factor or more when calculating the acceleration torque.

<sup>\*4</sup> Only for the motor part.

## HPG Geared Type Frame Size 40 mm (1.57 in.), 60 mm (2.36 in.)

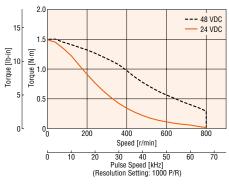
## Specifications

**3)** °us \*6 €

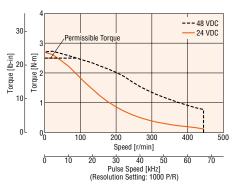
AC Input

**B-64** 

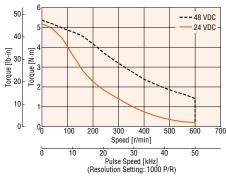
DC Input


EtherCAT Multi-Axis Driver

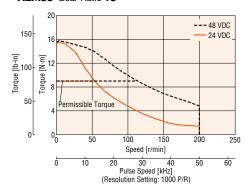
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U # <b></b> U3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Single Shaft                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AZM46AK-HP5□                                                                                                                                                                                                                                                                                                                                                                     | AZM46AK-HP9□                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AZM66AK-HP5□                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AZM66AK-HP15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| with Electromagnetic Brake  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AZM46MK-HP5□                                                                                                                                                                                                                                                                                                                                                                     | AZM46MK-HP9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AZM66MK-HP5□                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AZM66MK-HP15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Built-in Controller Type    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                  | AZD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -KD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Pulse Input Type with RS-48 | 5 Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                  | AZD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -KX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Pulse Input Type            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                  | AZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D-K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| orque                       | N·m (lb-in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.5 (13.2)                                                                                                                                                                                                                                                                                                                                                                       | 2.5 (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 (44)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 (79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                             | J: kg·m² (oz-in²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55×10 <sup>-7</sup> (0.3) [7                                                                                                                                                                                                                                                                                                                                                     | 1×10 <sup>-7</sup> (0.39)]*1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 370×10 <sup>-7</sup> (2.0) [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 530×10 <sup>-7</sup> (2.9)] <b>*</b> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|                             | J: kg·m² (oz-in²)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $5.8 \times 10^{-7} (0.032)$ [4.2×10 <sup>-7</sup> (0.023)]                                                                                                                                                                                                                                                                                                                      | $3.4 \times 10^{-7} (0.0186)$<br>[ $2.9 \times 10^{-7} (0.0159)$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92×10 <sup>-7</sup> (0.50)<br>[86×10 <sup>-7</sup> (0.47)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 78×10 <sup>-7</sup> (0.43)<br>[77×10 <sup>-7</sup> (0.42)]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Resol                       | ution Setting: 1000 P/R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.072°/Pulse                                                                                                                                                                                                                                                                                                                                                                     | 0.04°/Pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.072°/Pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.024°/Pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| ķ                           | N⋅m (lb-in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                | 2.5 (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9 (79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| eous Torque*                | N⋅m (lb-in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Power On                    | N·m (lb-in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.75 (6.6)                                                                                                                                                                                                                                                                                                                                                                       | 1.35 (11.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5 (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.5 (66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Electromagnetic Brake       | N⋅m (lb-in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.75 (6.6)                                                                                                                                                                                                                                                                                                                                                                       | 1.35 (11.9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.5 (22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.5 (66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                             | r/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 - 800                                                                                                                                                                                                                                                                                                                                                                          | 0 - 444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 - 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 - 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|                             | arcmin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Voltage                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                  | 24 VDC±5% <b>*</b> 4/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48 VDC ±5%*5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Input Current               | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.72 (                                                                                                                                                                                                                                                                                                                                                                           | 1.8)* <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.55 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (3.8)* <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| ice Runout*3                | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Diameter Runout*3           | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.                                                                                                                                                                                                                                                                                                                                                                               | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|                             | with Electromagnetic Brake Built-in Controller Type Pulse Input Type with RS-48 Pulse Input Type Torque  Resolution Resol | with Electromagnetic Brake  Built-in Controller Type  Pulse Input Type with RS-485 Communication  Pulse Input Type  Torque  N⋅m (lb-in)  J: kg⋅m² (0z-in²)   Resolution Setting: 1000 P/R  N⋅m (lb-in)  Resolution Setting: 1000 P/R  N⋅m (lb-in)  Power On  N⋅m (lb-in)  Power On  N⋅m (lb-in)  Electromagnetic Brake  N⋅m (lb-in)  Voltage  Input Current  A  ace Runout*3  mm | with Electromagnetic Brake         AZM46MK-HP5□           Built-in Controller Type         Pulse Input Type with RS-485 Communication           Pulse Input Type         N·m (lb-in)         1.5 (13.2)           Orque         N·m (lb-in)         55×10⁻√(0.3) [7           J: kg·m² (oz-in²)         55×10⁻√(0.032) [4.2×10⁻√(0.032)]           Resolution Setting: 1000 P/R         0.072²/Pulse           N·m (lb-in)         *           Power On         N·m (lb-in)         *           Power On         N·m (lb-in)         0.75 (6.6)           Electromagnetic Brake         N·m (lb-in)         0.75 (6.6)           r/min         0 - 800           arcmin         Voltage           Input Current         A         1.72 (           ace Runout**3         mm | with Electromagnetic Brake         AZM46MK-HP5□         AZM46MK-HP9□           Built-in Controller Type         AZD           Pulse Input Type with RS-485 Communication         AZD           Pulse Input Type         AZD           Orque         N·m (lb-in)         1.5 (13.2)         2.5 (22)           J: kg·m² (oz-in²)         55×10⁻ (0.3) [71×10⁻ (0.39)]*1         3.4×10⁻ (0.0186)         [2.9×10⁻ (0.0159)]           Resolution Setting: 1000 P/R         5.8×10⁻ (0.023)         3.4×10⁻ (0.0159)]         5         9           Resolution Setting: 1000 P/R         0.072⁻/Pulse         0.04⁻/Pulse         0.04⁻/Pulse           N·m (lb-in)         *         2.5 (22)           Leous Torque*         N·m (lb-in)         *         *           Power On         N·m (lb-in)         0.75 (6.6)         1.35 (11.9)           Electromagnetic Brake         N·m (lb-in)         0.75 (6.6)         1.35 (11.9)           Input Current         A         1.72 (1.8)*1           Input Current         A         1.72 (1.8)*1           Input Current         A         1.72 (1.8)*1 | with Electromagnetic Brake         AZM46MK-HP5□         AZM46MK-HP9□         AZM66MK-HP5□           Built-in Controller Type         AZD-KD           Pulse Input Type with RS-485 Communication         AZD-K           Orque         N·m (lb-in)         1.5 (13.2)         2.5 (22)         5 (44)           J: kg·m² (oz-in²)         55×10⁻² (0.32) [71×10⁻² (0.39)]*1         370×10⁻² (0.50) [86×10⁻² (0.50) [86×10⁻² (0.47)]           J: kg·m² (oz-in²)         5.8×10⁻² (0.032) [4.2×10⁻² (0.023)]         3.4×10⁻² (0.0186) [92×10⁻² (0.50) [86×10⁻² (0.47)]           Resolution Setting: 1000 P/R         0.072⁻/Pulse         0.04⁻/Pulse         0.072⁻/Pulse           N·m (lb-in)         *         2.5 (22)         *           N·m (lb-in)         *         2.5 (22)         *           Power On         N·m (lb-in)         0.75 (6.6)         1.35 (11.9)         2.5 (22)           Electromagnetic Brake         N·m (lb-in)         0.75 (6.6)         1.35 (11.9)         2.5 (22)           Input Current         A         1.72 (1.8)*1         3 (0.05⁻)           Voltage         24 VDC±5%*4/48 VDC±5%*5           Input Current         A         1.72 (1.8)*1         3.55 (44) |  |


- \*For the geared motor output torque, refer to the speed torque characteristics.
- $\bullet$  For the output flange type, the box  $\square$  in the product name indicates  ${\bf F}.$
- \*1 The bracket [] indicates the value for the product with an electromagnetic brake.
- \*2 The value is calculated by converting the inertia inside the gear unit into the motor shaft. The bracket [] indicates the value for the flange output type.
- \*3 Indicates the value for the flange output type.
- \*4 For the type with an electromagnetic brake, 24 VDC±4% specification applies if the wiring distance between the motor and driver is extended to 20 m (65.6 ft.) using a cable.
- \*5 When the motor is operated with 48 VDC input, as a reference, keep the load inertia 10 times the rotor inertial ratio or less and twice the safety factor or more when calculating the acceleration torque. (Excluding **AZM46**)
- \*6 Only for the motor part.

## Speed - Torque Characteristics (Reference Values)


#### AZM46 Gear Ratio 5




#### AZM46 Gear Ratio 9



#### AZM66 Gear Ratio 5



#### AZM66 Gear Ratio 15



- Data for the speed torque characteristics is based on Oriental Motor's internal measurement conditions. If the conditions are changed, the characteristics may also change as a result.
- Depending on the driving conditions, a considerable amount of heat may be generated by the motor. To protect the absolute sensor, be sure to keep the motor case temperature at 80°C (176°F) max. (When conforming to the UL/CSA Standards, the temperature of the motor case must be kept at 75°C (167°F) max., since the motor is recognized as heat-resistant class A.)

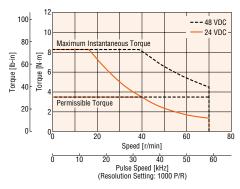
## Harmonic Geared Type Frame Size 42 mm (1.65 in.), 60 mm (2.36 in.)

## Specifications

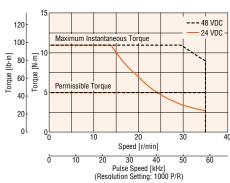
**₽**10°118°4€

|                     |                              |                        |                               |                               |                               | 02-00 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|------------------------------|------------------------|-------------------------------|-------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Motor Product Name  | Single Shaft                 |                        | AZM46AK-HS50                  | AZM46AK-HS100                 | AZM66AK-HS50                  | AZM66AK-HS100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Motor Product Name  | with Electromagnetic Brake   |                        | AZM46MK-HS50                  | AZM46MK-HS100                 | AZM66MK-HS50                  | AZM66MK-HS100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     | Built-in Controller Type     |                        |                               | AZD                           | -KD                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Driver Product Name | Pulse Input Type with RS-485 | Communication          |                               | AZD                           | -KX                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     | Pulse Input Type             |                        |                               | AZI                           | D-K                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Maximum Holding     | Torque                       | N⋅m (lb-in)            | 3.5 (30)                      | 5 (44)                        | 7 (61)                        | 10 (88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Rotor Inertia       |                              | J: kg·m² (oz-in²)      | 72×10 <sup>-7</sup> (0.39) [8 | 38×10 <sup>-7</sup> (0.48)]*1 | 405×10 <sup>-7</sup> (2.2) [5 | 565×10 <sup>-7</sup> (3.1)]*1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Gear Ratio          |                              |                        | 50                            | 100                           | 50                            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Resolution          | Resolut                      | tion Setting: 1000 P/R | 0.0072°/Pulse                 | 0.0036°/Pulse                 | 0.0072°/Pulse                 | 0.0036°/Pulse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Permissible Torque  |                              | N·m (lb-in)            | 3.5 (30)                      | 5 (44)                        | 7 (61)                        | 10 (88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Maximum Instantar   | neous Torque*                | N·m (lb-in)            | 8.3 (73)                      | 11 (97)                       | *                             | 36 (310)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Holding Torque at   | Power On                     | N·m (lb-in)            | 3.5 (30)                      | 5 (44)                        | 7 (61)                        | 10 (88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Motor Standstill    | Electromagnetic Brake        | N⋅m (lb-in)            | 3.5 (30)                      | 5 (44)                        | 7 (61)                        | 10 (88)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Speed Range         |                              | r/min                  | 0 - 70                        | 0 - 35                        | 0 - 60                        | 0 - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Lost Motion         |                              | arcmin                 | 1.5 max.<br>(±0.16 N⋅m)       | 1.5 max.<br>(±0.20 N⋅m)       | 0.7 max.<br>(±0.28 N⋅m)       | 0.7 max.<br>(±0.39 N·m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (Load Torque)       | W.H                          |                        | (±0.10 N·III)                 | ` ′                           | , , ,                         | (±0.59 (III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Power Supply        | Voltage                      |                        |                               | 24 VDC±5%*2/                  |                               | <del>_</del> |
| Input               | Input Current                | A                      | 1.72 (                        | 1.8)*1                        | 3.55 (                        | 3.8)*1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

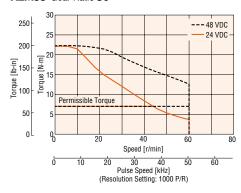
<sup>\*</sup>For the geared motor output torque, refer to the speed - torque characteristics.


\*4 Only for the motor part.

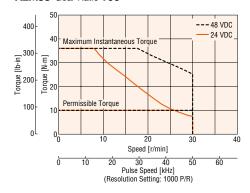
#### Note


The rotor inertia represents a sum of the inertia of the harmonic gear converted to motor shaft values.

## Speed - Torque Characteristics (Reference Values)


#### AZM46 Gear Ratio 50




#### AZM46 Gear Ratio 100



#### AZM66 Gear Ratio 50



#### AZM66 Gear Ratio 100



#### Note

- Data for the speed torque characteristics is based on Oriental Motor's internal measurement conditions. If the conditions are changed, the characteristics may also change as a result.
- Depending on the driving conditions, a considerable amount of heat may be generated by the motor. To protect the absolute sensor, be sure to keep the motor case temperature at 80°C (176°F) max. (When conforming to the UL/CSA Standards, the temperature of the motor case must be kept at 75°C (167°F) max., since the motor is recognized as heat-resistant class A.)

Overview

Slides

CSTEF

Cylinders **Χ**STEF DRS2

Rotary Actuators **OSTEP DGII** 

**USTEP** AR

<sup>\*1</sup> The bracket [ ] indicates the value for the product with an electromagnetic brake.

<sup>\*2</sup> For the type with an electromagnetic brake, 24 VDC±4% specification applies if the wiring distance between the motor and driver is extended to 20 m (65.6 ft.) using a cable.

<sup>\*3</sup> When the motor is operated with 48 VDC input, as a reference, keep the load inertia 10 times the rotor inertial ratio or less and twice the safety factor or more when calculating the acceleration torque. (Excluding AZM46)

## **■**Driver Specifications

AC Input

DC Inpu

EtherCAT Multi-Axis Driver

| Driver Type            |                 |                         |                                                       | Built-in Controller Type | Pulse Input Type<br>with RS-485 Communication                             | Pulse Input Type                            |  |
|------------------------|-----------------|-------------------------|-------------------------------------------------------|--------------------------|---------------------------------------------------------------------------|---------------------------------------------|--|
| Driver Produc          | t Name          |                         |                                                       | AZD-KD                   | AZD-KX                                                                    | AZD-K                                       |  |
|                        |                 |                         | Max. Input Pulse Frequency                            | _                        | Line driver output by programmable oduty is 50%)                          | controller: 1 MHz (When the pulse           |  |
|                        |                 |                         | wax. input ruise rrequeits                            |                          | Open-collector output by programmable contr<br>Negative Logic Pulse Input | oller: 250 kHz (When the pulse duty is 50%) |  |
| I/O Function           |                 |                         | Positioning Data Points                               | 256 Points               | 256 Poi                                                                   | ints*1                                      |  |
|                        |                 |                         | Direct Input                                          | 10 Points                | 6 Po                                                                      | ints                                        |  |
|                        |                 |                         | Direct Output                                         |                          | 6 Points                                                                  |                                             |  |
|                        |                 |                         | RS-485 Communication Remote Input                     |                          | 16 Points                                                                 | _                                           |  |
|                        |                 |                         | RS-485 Communication Remote Output                    | -                        | 16 Points                                                                 | _                                           |  |
| Setting Tool           |                 |                         | Support Software MEXEO2                               |                          | 0                                                                         |                                             |  |
| Position Coor          | dinate Manageme | nt Method               |                                                       |                          | Battery-Free Absolute System                                              |                                             |  |
|                        |                 | Operation               | Positioning Operation                                 | 0                        | 0                                                                         | <b>○*</b> 1                                 |  |
|                        | Me              | Method                  | Positioning Push-Motion Operation*2                   | 0                        | 0                                                                         | <b>○*</b> 1                                 |  |
|                        |                 |                         | Single-Motion Operation                               | 0                        | 0                                                                         | <b>○*</b> 1                                 |  |
|                        | Positioning     | Positioning Linked Mode | Sequential Operation                                  | 0                        | 0                                                                         | <b>○*</b> 1                                 |  |
|                        | Operation Linke | LITIKEU WIOGE           | Multi-Speed Operation<br>(Continuous Form Connection) | 0                        | 0                                                                         | <b>○</b> *1                                 |  |
|                        |                 | Sequence                | Loop Operation (Repetitive)                           | 0                        | 0                                                                         | ○ <b>*</b> 1                                |  |
| Operation              |                 | Control                 | Event Jump Operation                                  | 0                        | 0                                                                         | ○ <b>*</b> 1                                |  |
|                        |                 | Position Control        |                                                       | 0                        | 0                                                                         | ○ <b>*</b> 1                                |  |
|                        | Continuous      | Speed Control           |                                                       | 0                        | 0                                                                         |                                             |  |
|                        | Operation       | Torque Control          |                                                       | 0                        | 0                                                                         | ○*¹                                         |  |
|                        |                 | Push-Motion*2           |                                                       | 0                        | 0                                                                         |                                             |  |
|                        | B. I I. II.     | 0                       | Return-to-Home Operation                              | 0                        | 0                                                                         | 0                                           |  |
|                        | Return-to-Hor   | ne Operation            | High-Speed Return-to-Home Operation                   | 0                        | 0                                                                         | 0                                           |  |
|                        | JOG operation   |                         | ·                                                     | 0                        | 0                                                                         | 0                                           |  |
|                        |                 |                         | Waveform Monitor                                      | 0                        | 0                                                                         | 0                                           |  |
|                        |                 |                         | Overload Detection                                    | 0                        | 0                                                                         | 0                                           |  |
| Monitoring/Information |                 |                         | Overheat Detection (Motor and Driver)                 | 0                        | 0                                                                         | 0                                           |  |
|                        |                 |                         | Position and Speed Information                        | 0                        | 0                                                                         | 0                                           |  |
|                        |                 |                         | Temperature Detection (Motor and Driver)              | 0                        | 0                                                                         | 0                                           |  |
|                        |                 |                         | Motor Load Factor                                     | 0                        | 0                                                                         | 0                                           |  |
|                        |                 |                         | Travel Distance and Integrated Travel Distance        | 0                        | 0                                                                         | 0                                           |  |
| Alarm                  |                 |                         |                                                       | 0                        | 0                                                                         | 0                                           |  |

## RS-485 Communication Specification

| Protocol                   | Modbus RTU Mode                                                                                                                                                                                  |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electrical Characteristics | EIA-485 Based, Straight Cable Use a shielded twisted pair cable (TIA/EIA-568B CAT5e or higher is recommended) and keep the total wiring distance including extension to 50 m (164 ft.) or less.* |
| Communication Mode         | Half duplex, asynchronous communication (data: 8 bits, stop bit: 1 bit or 2 bits, parity: none, even, or odd)                                                                                    |
| Transmission Rate          | Select either from 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115200 bps, or 230400 bps.                                                                                                         |
| Connection Units           | Up to 31 drivers can be connected to a single programmable controller (master device).                                                                                                           |

<sup>\*</sup>If the motor cable or power supply cable generates an undesirable amount of noise depending on the wiring or configuration, shield the cable or install a ferrite core.

## Electromagnetic Brake Specification

| Product Name         |    | AZM46 AZM66 AZM6         |            |  |  |  |
|----------------------|----|--------------------------|------------|--|--|--|
| Brake Type           |    | Power Off Activated Type |            |  |  |  |
| Power Supply Voltage |    | 24 VDC±5%*               |            |  |  |  |
| Power Supply Current | Α  | 0.08 0.25 0.25           |            |  |  |  |
| Brake Operating Time | ms | 20                       |            |  |  |  |
| Brake Releasing Time | ms | 30                       |            |  |  |  |
| Time Rating          |    |                          | Continuous |  |  |  |

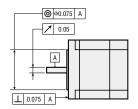
<sup>\*</sup>For the type with an electromagnetic brake, a 24 VDC±4% specification applies if the wiring distance between the motor and driver is extended to 20 m (65.6 ft.) using a cable

 $<sup>\</sup>textcolor{red}{*2} \text{ The push-motion operation cannot be performed with geared motors or rotary actuators } \textbf{DGII} \text{ Series}.$ 

<sup>•</sup> The product names are listed such that the applicable product names can be determined.

## Hybrid Control System **Q**STEP

## ■General Specifications


|                                                                                                                                                                       |                             | Motor                                                                                                                                                                                                                                                        | Driver                                                                                                                              |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Thermal Class:                                                                                                                                                        |                             | 130 (B)<br>[UL Recognized 105 (A)*1]                                                                                                                                                                                                                         | -                                                                                                                                   |  |  |
| Insulation Resistance                                                                                                                                                 |                             | 100 $\rm M\Omega$ or more when 500 VDC megger is applied between the following places:<br>- Case – Motor Windings<br>- Case – Electromagnetic Brake Windings*2                                                                                               | 100 $\mbox{M}\Omega$ or more when 500 VDC megger is applied between the following places:<br>• PE Terminals — Power Supply Terminal |  |  |
| Dielectric Strength                                                                                                                                                   |                             | Sufficient to withstand the following for 1 minute:  AZM14, AZM15, AZM24, AZM26  • Case — Motor Winding 0.5 kVAC 50/60 Hz  AZM46, AZM48, AZM66, AZM69  • Case — Motor Winding 1.0 kVAC 50/60 Hz  • Case — Electromagnetic Brake Windings*2 1.0 kVAC 50/60 Hz | -                                                                                                                                   |  |  |
|                                                                                                                                                                       | Ambient Temperature         | 0 to +40°C (+32 to +104°F) (Non-Freezing)                                                                                                                                                                                                                    | 0 to +50° C (+32 to +122°F) (Non-Freezing)                                                                                          |  |  |
| Operating Environment Ambient Humidity                                                                                                                                |                             | 85% or less (Non-Condensing)                                                                                                                                                                                                                                 |                                                                                                                                     |  |  |
|                                                                                                                                                                       | Surrounding Atmosphere      | No corrosive gas or dust. No water or oil.                                                                                                                                                                                                                   |                                                                                                                                     |  |  |
| Degree of Protection                                                                                                                                                  |                             | AZM14, AZM15, AZM24, AZM26: IP40 (excluding the mounting surface and connectors) AZM46, AZM48, AZM66, AZM69: IP66 (excluding the mounting surface and connectors)                                                                                            | IP10                                                                                                                                |  |  |
| AZM14, AZM15, AZM24, AZM26: ±5 arcmin (±0.083°)           Stop Position Accuracy         AZM46, AZM48: ±4 arcmin (±0.067°)           AZM66, AZM69: ±3 arcmin (±0.05°) |                             | nin (±0.067°)                                                                                                                                                                                                                                                |                                                                                                                                     |  |  |
| Shaft Runout                                                                                                                                                          |                             | 0.05 mm (0.002 in.) T.I.R.*3                                                                                                                                                                                                                                 | _                                                                                                                                   |  |  |
| Concentricity of Installing                                                                                                                                           | Pilot to the Shaft          | 0.075 mm (0.003 in.) T.I.R.*3                                                                                                                                                                                                                                | -                                                                                                                                   |  |  |
| Perpendicularity of Instal                                                                                                                                            | lation Surface to the Shaft | 0.075 mm (0.003 in.) T.I.R.*3                                                                                                                                                                                                                                | -                                                                                                                                   |  |  |
| Multi-Rotation Detection                                                                                                                                              | Range Upon Power OFF        | AZM14, AZM15, AZM24, AZM26: ±4<br>AZM46, AZM48, AZM66, AZM69: ±9                                                                                                                                                                                             | ,                                                                                                                                   |  |  |

\*1 Excluding AZM14, AZM15, AZM24, AZM26

\*3 T.I.R. (Total Indicator Reading): The total dial gauge reading when the measurement section is rotated once around the reference axis center.

#### Note

Disconnect the motor and driver when taking an insulation resistance measurement or performing a dielectric voltage withstand test.
 Also, do not perform these tests on the absolute sensor part of the motor.



Overview

**Q**steP Absolute

Linear Slides *OLSTEP* **EZS** 

Cylinders

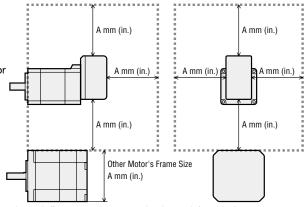
CYSTEP

Cylinders *QSTEP* **DRS2** 

Rotary Actuators OSTEP DGII

*O*STEP **AR** 

<sup>\*2</sup> Electromagnetic brake type only.


#### Motor Installation

When installing the motor, pay close attention to the installation location, because the absolute sensor can easily be affected by magnetic force.

AC Input Installation of a Motor with a Max. Frame Size of 28 mm (1.10 in.)

When installing the motor parts in parallel, leave a buffer space that is equal to or greater than the motor's size (frame size) both horizontally and vertically.

Reference



Leave a buffer space equal to or greater than the motor's frame size A.

#### Installing a Motor in an Environment Subject to a Magnetic Field System

Make sure that the magnetic flux density of the absolute sensor surface does not exceed the table value.

| Motor Frame Size         | Magnetic Flux Density |
|--------------------------|-----------------------|
| 28 mm (1.10 in.) or less | 2 mT*                 |
| 42 mm (1.65 in.) or more | 10 mT                 |

<sup>\*</sup>When the magnetic flux density is from 1 mT to 2 mT, use the motor with the ambient temperature from 20°C (68 °F) to 40°C (104 °F).

### Permissible Moment Load

→ Page B-11

#### Permissible Radial Load and Permissible Axial Load

→ Page B-12

#### **Rotation Direction**

→ Page B-13

### Details of the Harmonic Geared Type Accuracy

→ Page B-41

## Load Torque – Driver Input Current **Characteristics**

This is the relationship between the load torque and driver input current at each speed when the motor is actually operated. Due to these characteristics, it is possible to estimate the power supply capacity required to use the multi-axis. For geared types, use the speed and torque at the motor shaft.

1000 r/min

-500 r/mi

Motor Shaft Speed [r/min] = Gear Output Shaft Speed × Gear Ratio Gear Output Shaft Torque Motor Shaft Torque [N·m(oz-in)] = Gear Ratio

48 VDC

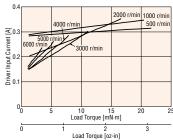
AZM46

₹1.2

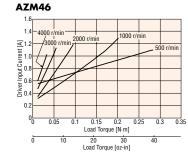
Overview

Linear Slides OSTEP EZS

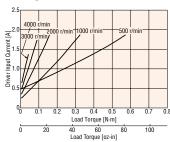
500 r/min


Cylinders *Q*(*sтеР* **DRS2** 

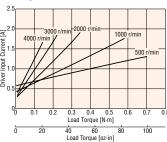
Rotary Actuators *OSTEP* DGII


**USTEP** AR

#### 24 VDC







4000 r/min

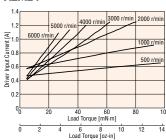


#### AZM48



#### AZM48

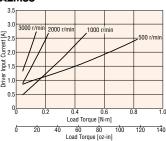



0.15 0.2 Load Torque [N·m]

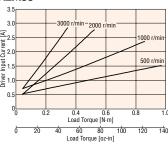
Load Torque [oz-in]

#### AZM24

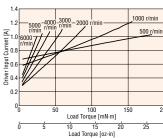
AZM15


6000 r/mi

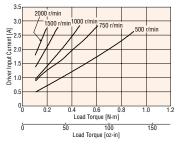



Load Torque [mN·m]

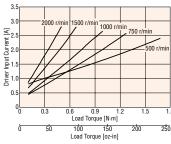
Load Torque [oz-in]







#### AZM66




#### AZM26



#### AZM69



#### AZM69



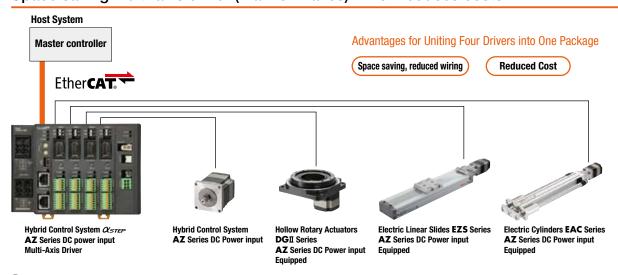
### **EtherCAT Drive Profile Support**

## AZ Series Multi-Axis Driver DC Power Supply Input

AC

DC Input

EtherCAT Multi-Axis Driver The multi-axis driver can connect the Oriental Motor **AZ** Series DC power supply input motors or linear & rotary actuators that equip them.


We supply products that support EtherCAT drive profiles.

Number of Axes: 2-axis, 3-axis, 4-axis



#### Features

### Space saving multi-axis driver (max. of 4 axes) which reduces costs



The connected motors and linear & rotary actuators are representative examples.

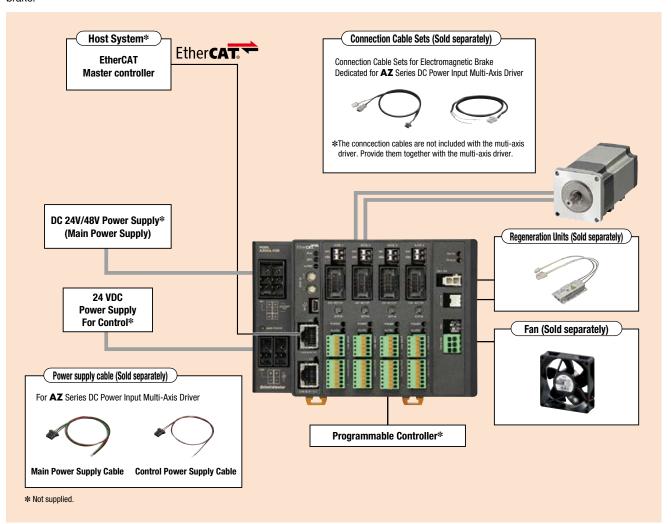
#### ESI File

An ESI file is prepared so that EtherCAT can be more easily used.

The ESI file can be downloaded from the Oriental Motor website.

Furthermore, please contact OMRON Corporation regarding connections with PLCs manufactured by OMRON. An EtherCAT connection guide has been prepared.

## Applicable Series


The AZ Series multi-axis driver DC power supply input can be used in combination with the following linear & rotary actuators.

- Compact linear actuators DRS2 Series equipped with the AZ Series
- Hollow rotary actuator **DGII** Series equipped with the **AZ** Series DC power supply input
- Electric linear slides **EZS** Series equipped with the **AZ** Series DC power supply input
- Electric cylinders **EAC** Series equipped with the **AZ** Series DC power supply input
- For details about motor and linear & rotary actuator combinations, please contact your nearest Oriental Motor sales office.

### System Configuration

#### EtherCAT Drive Profile Support

The following is a system configuration example combining with the **AZ** Series DC power supply input standard type with an electromagnetic



#### ●Example of System Configuration Pricing

| AZ Series |                         |            |  |  |  |
|-----------|-------------------------|------------|--|--|--|
| Motor     | Connection Cable<br>Set |            |  |  |  |
| AZM66MK   | AZD4A-KED               | CC030VZFBA |  |  |  |
| \$565.00  | \$1,370.00              | \$123.00   |  |  |  |

|                                | Sold Seperately                   |                          |            |  |  |  |  |
|--------------------------------|-----------------------------------|--------------------------|------------|--|--|--|--|
| Cable for Main<br>Power Supply | Cable for Control<br>Power Supply | Regeneration<br>Resistor | Fan        |  |  |  |  |
| LC03D06A                       | LC02D06A                          | RGC40                    | MD825B-24L |  |  |  |  |
| \$29.00                        | \$25.00                           | \$62.00                  | \$28.00    |  |  |  |  |

The system configuration shown above is an example. Other combinations are also available.

The motor cable and electromagnetic brake cable from the motor cannot be connected directly to the driver. When connecting to a driver, use a connection cable.

Overview

Linear Slides *X*STEP EZS

Cylinders ĆSTEР DRS2

Rotary Actuators *OSTEP* DGII

**USTEP** AR

## Product Number

Multi-Axis Driver

AZD 4A - K ED

Input

① ② ③ ④

DC Input

EtherCAT Multi-Axis Driver  AZ Series Multi-Axis Driver Dedicated Connection Cable Set/Flexible Connection Cable Set

 CC
 050
 V
 Z
 □
 F
 A

 ①
 ②
 ③
 ④
 ⑤
 ⑥
 ⑧

♦ Connection Cable Set for a Motor with an Electromagnetic Brake

| CC | 050 | V | Z | <u>_</u> F_ | <u>B</u> | Α |
|----|-----|---|---|-------------|----------|---|
| 1  | 2   | 3 | 4 | 6           | 7        | 8 |

| 1 | Driver Type        | AZD: AZ Series Driver                                    |
|---|--------------------|----------------------------------------------------------|
| 2 | Number of Axes     | <b>2A</b> : 2 Axes <b>3A</b> : 3 Axes <b>4A</b> : 4 Axes |
| 3 | Power Supply Input | <b>K</b> : 24/48 VDC                                     |
| 4 | Network Type       | ED: EtherCAT Drive Profile                               |

| 1       |                       | CC: Cable                                                                              |
|---------|-----------------------|----------------------------------------------------------------------------------------|
|         | Length                | <b>005</b> : 0.5 m (1.6 ft.) <b>010</b> : 1 m (3.3 ft.) <b>015</b> : 1.5 m (4.9 ft.)   |
| <u></u> |                       | <b>020</b> : 2 m (6.6 ft.) <b>025</b> : 2.5 m (8.2 ft.) <b>030</b> : 3 m (9.8 ft.)     |
| 2       |                       | <b>040</b> : 4 m (13.1 ft.) <b>050</b> : 5 m (16.4 ft.) <b>070</b> : 7 m (23.0 ft.)    |
|         |                       | <b>100</b> : 10 m (32.8 ft.) <b>150</b> : 15 m (49.2 ft.) <b>200</b> : 20 m (65.6 ft.) |
| 3       | Reference Number      |                                                                                        |
| 4       | Applicable Model      | Z: AZ Series                                                                           |
|         | Reference Number      | Blank: Frame Size 42 mm (1.65 in.) ( <b>HPG</b> Geared Type is                         |
| (5)     |                       | 40 mm (1.57 in.)), 60 mm (2.36 in.)                                                    |
|         |                       | 2: Frame Size 20 mm (0.79 in.), 28 mm (1.10 in.)                                       |
| <u></u> | Cable Type            | F: Connection Cable Set                                                                |
| 6       |                       | R: Flexible Connection Cable Set                                                       |
| 7       | Electromagnetic Brake | B: with Electromagnetic Brake                                                          |
| 8       | Driver Type           | A: Multi-Axis Driver                                                                   |

### Product Line

#### Multi-Axis Driver

**♦** EtherCAT Drive Profile Support

| •            |                | •          |  |
|--------------|----------------|------------|--|
| Product Name | Number of Axes | List Price |  |
| AZD2A-KED    | 2 Axes         | \$860.00   |  |
| AZD3A-KED    | 3 Axes         | \$1,140.00 |  |
| AZD4A-KED    | 4 Axes         | \$1,370.00 |  |



AZ Series Multi-Axis Driver Dedicated Connection Cable Sets/Flexible Connection Cable Sets





#### **♦** Connection Cable for Motor

| 1                 | Frame Size 20 mm (0.79 in.), 28 mm (1.10 in.) |            |                              |            | Frame Size 42 mm (1.65 in.), 60 mm (2.36 in.) |            |                              |            |
|-------------------|-----------------------------------------------|------------|------------------------------|------------|-----------------------------------------------|------------|------------------------------|------------|
| Length<br>m (ft.) | Connection Cable                              | List Price | Flexible<br>Connection Cable | List Price | Connection Cable                              | List Price | Flexible<br>Connection Cable | List Price |
| 0.5 (1.6)         | CC005VZ2FA                                    | \$79.00    | CC005VZ2RA                   | \$93.00    | CC005VZFA                                     | \$79.00    | CC005VZRA                    | \$93.00    |
| 1 (3.3)           | CC010VZ2FA                                    | \$79.00    | CC010VZ2RA                   | \$93.00    | CC010VZFA                                     | \$79.00    | CC010VZRA                    | \$93.00    |
| 1.5 (4.9)         | CC015VZ2FA                                    | \$84.00    | CC015VZ2RA                   | \$102.00   | CC015VZFA                                     | \$84.00    | CC015VZRA                    | \$102.00   |
| 2 (6.6)           | CC020VZ2FA                                    | \$89.00    | CC020VZ2RA                   | \$110.00   | CC020VZFA                                     | \$89.00    | CC020VZRA                    | \$110.00   |
| 2.5 (8.2)         | CC025VZ2FA                                    | \$95.00    | CC025VZ2RA                   | \$117.00   | CC025VZFA                                     | \$95.00    | CC025VZRA                    | \$117.00   |
| 3 (9.8)           | CC030VZ2FA                                    | \$101.00   | CC030VZ2RA                   | \$123.00   | CC030VZFA                                     | \$101.00   | CC030VZRA                    | \$123.00   |
| 4 (13.1)          | CC040VZ2FA                                    | \$108.00   | CC040VZ2RA                   | \$139.00   | CC040VZFA                                     | \$108.00   | CC040VZRA                    | \$139.00   |
| 5 (16.4)          | CC050VZ2FA                                    | \$122.00   | CC050VZ2RA                   | \$156.00   | CC050VZFA                                     | \$122.00   | CC050VZRA                    | \$156.00   |
| 7 (23.0)          | CC070VZ2FA                                    | \$150.00   | CC070VZ2RA                   | \$199.00   | CC070VZFA                                     | \$150.00   | CC070VZRA                    | \$199.00   |
| 10 (32.8)         | CC100VZ2FA                                    | \$194.00   | CC100VZ2RA                   | \$260.00   | CC100VZFA                                     | \$194.00   | CC100VZRA                    | \$260.00   |
| 15 (49.2)         | CC150VZ2FA                                    | \$269.00   | CC150VZ2RA                   | \$366.00   | CC150VZFA                                     | \$269.00   | CC150VZRA                    | \$366.00   |
| 20 (65.6)         | CC200VZ2FA                                    | \$342.00   | CC200VZ2RA                   | \$470.00   | CC200VZFA                                     | \$342.00   | CC200VZRA                    | \$470.00   |

## Hybrid Control System *QSTEP*

#### ♦ Connection Cable Set for a Motor with an Electromagnetic Brake

| Length    | Frame Size 42 mm (1.65 in.), 60 mm (2.36 in.) |            |                               |            |  |  |  |
|-----------|-----------------------------------------------|------------|-------------------------------|------------|--|--|--|
| m (ft.)   | Connection Cable Set                          | List Price | Flexible Connection Cable Set | List Price |  |  |  |
| 0.5 (1.6) | CC005VZFBA                                    | \$95.00    | CC005VZRBA                    | \$126.00   |  |  |  |
| 1 (3.3)   | CC010VZFBA                                    | \$95.00    | CC010VZRBA                    | \$126.00   |  |  |  |
| 1.5 (4.9) | CC015VZFBA                                    | \$102.00   | CC015VZRBA                    | \$137.00   |  |  |  |
| 2 (6.6)   | CC020VZFBA                                    | \$108.00   | CC020VZRBA                    | \$148.00   |  |  |  |
| 2.5 (8.2) | CC025VZFBA                                    | \$116.00   | CC025VZRBA                    | \$158.00   |  |  |  |
| 3 (9.8)   | CC030VZFBA                                    | \$123.00   | CC030VZRBA                    | \$167.00   |  |  |  |
| 4 (13.1)  | CC040VZFBA                                    | \$134.00   | CC040VZRBA                    | \$189.00   |  |  |  |
| 5 (16.4)  | CC050VZFBA                                    | \$149.00   | CC050VZRBA                    | \$211.00   |  |  |  |
| 7 (23.0)  | CC070VZFBA                                    | \$183.00   | CC070VZRBA                    | \$265.00   |  |  |  |
| 10 (32.8) | CC100VZFBA                                    | \$236.00   | CC100VZRBA                    | \$343.00   |  |  |  |
| 15 (49.2) | CC150VZFBA                                    | \$324.00   | CC150VZRBA                    | \$476.00   |  |  |  |
| 20 (65.6) | CC200VZFBA                                    | \$410.00   | CC200VZRBA                    | \$607.00   |  |  |  |





Cable for Motor

Cable for Electromagnetic Brake

χ<sub>STEP</sub> Absolute

Overview

Linear Slides ØSTEP EZS

Cylinders

OSTEP

Cylinders *QsтеР* **DRS2** 

Rotary Actuators *OSTEP* DGII

**CASTEP**AR

#### Note

Only connection cables are offered for the dedicated multi-axis driver cables. AZ Series extension cables cannot be used.

#### Included

#### Multi-Axis Driver

|                              | Included | CN1       | CN2       | CN1, CN2 | CN9       | CN10      | Operating |
|------------------------------|----------|-----------|-----------|----------|-----------|-----------|-----------|
| Network Type, Number of Axes |          | Connector | Connector | Contact  | Connector | Connector | Manual    |
|                              | 2 Axes   | 2 pcs.    | 2 pcs.    | 10 pcs.  | 2 pcs.    | 2 pcs.    | 1 Copy    |
| EtherCAT Compatible          | 3 Axes   | 2 pcs.    | 2 pcs.    | 10 pcs.  | 3 pcs.    | 3 pcs.    | 1 Copy    |
|                              | 4 Axes   | 2 pcs.    | 2 pcs.    | 10 pcs.  | 4 pcs.    | 4 pcs.    | 1 Copy    |

## ■Specifications (€ • 🗫 us

#### Power Supply Input

Main Power Supply Use:  $24 \text{ VDC}/48 \text{ VDC} \pm 10\%$  7.0 A (7.0 A max. Use with an average of 4.0 A max.)

Control Power Supply Use:  $24 \text{ VDC} \pm 10\%$  1.5 A (If it is the type with an electromagnetic brake, use a 24 VDC  $\pm 5\%$  power supply)

(If it is the type with an electromagnetic brake (when using a connection cable with a length of 20 m (65.6 ft.)), use a 24 VDC  $\pm 4\%$  power supply)

#### Communication Specifications

#### 

| Item                   | Description                                                |
|------------------------|------------------------------------------------------------|
| Transmission Speed     | 100 Mbps                                                   |
| Communication Cycle    | 0.5 ms, 1 ms, 2 ms, 3 ms, 4 ms, 5 ms, 6 ms, 7 ms, 8 ms     |
| Node Address           | 0 to 255 (00h to FFh, Initial Value: 00h)                  |
| Communication Protocol | Dedicated Protocol for EtherCAT (CoE) CiA402 Drive Profile |

#### General Specifications

| Item                             | Description                                                                         |
|----------------------------------|-------------------------------------------------------------------------------------|
| Degree of Protection             | IP10                                                                                |
| Operating Environment            | Ambient Temperature: 0 to +50°C (+32 to +122°F) (non-freezing)                      |
|                                  | Humidity: 85% or less (non-condensing)                                              |
|                                  | Altitude: Up to 1000 m (3300 ft.) above sea level                                   |
|                                  | Surrounding Atmosphere: No corrosive gas or dust. No water or oil.                  |
| Storage and Shipping Environment | Ambient Temperature: -25 to +70°C (-13 to +158°F) (non-freezing)                    |
|                                  | Humidity: 85% or less (non-condensing)                                              |
|                                  | Altitude: Up to 3000 m (10000 ft.) above sea level                                  |
|                                  | Surrounding Atmosphere: No corrosive gas or dust. No water or oil.                  |
| Insulation Resistance            | 100 M $\Omega$ or more when 500 VDC megger is applied between the following places: |
|                                  | FG terminal – Power supply terminal                                                 |
| Dielectric Strength              | Sufficient to withstand the following for 1 minute:                                 |
|                                  | FG terminal – Power supply terminal 1 kVAC 50/60 Hz Leak current 10 mA or less      |

#### Note

Disconnect the motor and driver when taking an insulation resistance measurement or performing a dielectric voltage withstand test.
 Also, do not perform these tests on the absolute sensor part of the motor.